Boosting Few-Shot Learning via Attentive Feature Regularization
- URL: http://arxiv.org/abs/2403.17025v1
- Date: Sat, 23 Mar 2024 14:36:48 GMT
- Title: Boosting Few-Shot Learning via Attentive Feature Regularization
- Authors: Xingyu Zhu, Shuo Wang, Jinda Lu, Yanbin Hao, Haifeng Liu, Xiangnan He,
- Abstract summary: Few-shot learning (FSL) based on manifold regularization aims to improve the recognition capacity of novel objects with limited training samples.
This paper proposes feature regularization (AFR) which aims to improve the feature representativeness and discriminability.
- Score: 35.4031662352264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning (FSL) based on manifold regularization aims to improve the recognition capacity of novel objects with limited training samples by mixing two samples from different categories with a blending factor. However, this mixing operation weakens the feature representation due to the linear interpolation and the overlooking of the importance of specific channels. To solve these issues, this paper proposes attentive feature regularization (AFR) which aims to improve the feature representativeness and discriminability. In our approach, we first calculate the relations between different categories of semantic labels to pick out the related features used for regularization. Then, we design two attention-based calculations at both the instance and channel levels. These calculations enable the regularization procedure to focus on two crucial aspects: the feature complementarity through adaptive interpolation in related categories and the emphasis on specific feature channels. Finally, we combine these regularization strategies to significantly improve the classifier performance. Empirical studies on several popular FSL benchmarks demonstrate the effectiveness of AFR, which improves the recognition accuracy of novel categories without the need to retrain any feature extractor, especially in the 1-shot setting. Furthermore, the proposed AFR can seamlessly integrate into other FSL methods to improve classification performance.
Related papers
- Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Generalized Inter-class Loss for Gait Recognition [11.15855312510806]
Gait recognition is a unique biometric technique that can be performed at a long distance non-cooperatively.
Previous gait works focus more on minimizing the intra-class variance while ignoring the significance in constraining inter-class variance.
We propose a generalized inter-class loss which resolves the inter-class variance from both sample-level feature distribution and class-level feature distribution.
arXiv Detail & Related papers (2022-10-13T06:44:53Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Channel DropBlock: An Improved Regularization Method for Fine-Grained
Visual Classification [58.07257910065007]
Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion.
In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB) in combination with two alternative correlation metrics, to address this problem.
arXiv Detail & Related papers (2021-06-07T09:03:02Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
We propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method.
We introduce two novel learning objectives to enhance the discriminative clustering performance.
arXiv Detail & Related papers (2020-11-25T10:06:22Z) - Boosting Few-Shot Learning With Adaptive Margin Loss [109.03665126222619]
This paper proposes an adaptive margin principle to improve the generalization ability of metric-based meta-learning approaches for few-shot learning problems.
Extensive experiments demonstrate that the proposed method can boost the performance of current metric-based meta-learning approaches.
arXiv Detail & Related papers (2020-05-28T07:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.