Co-Occurring of Object Detection and Identification towards unlabeled object discovery
- URL: http://arxiv.org/abs/2403.17223v1
- Date: Mon, 25 Mar 2024 21:53:36 GMT
- Title: Co-Occurring of Object Detection and Identification towards unlabeled object discovery
- Authors: Binay Kumar Singh, Niels Da Vitoria Lobo,
- Abstract summary: We propose a novel deep learning based approach for identifying co-occurring objects in conjunction with base objects in multilabel object categories.
We performed our experiments on two publicly available datasets: Pascal VOC and MS-COCO.
- Score: 1.6037279419318131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel deep learning based approach for identifying co-occurring objects in conjunction with base objects in multilabel object categories. Nowadays, with the advancement in computer vision based techniques we need to know about co-occurring objects with respect to base object for various purposes. The pipeline of the proposed work is composed of two stages: in the first stage of the proposed model we detect all the bounding boxes present in the image and their corresponding labels, then in the second stage we perform co-occurrence matrix analysis. In co-occurrence matrix analysis, we set base classes based on the maximum occurrences of the labels and build association rules and generate frequent patterns. These frequent patterns will show base classes and their corresponding co-occurring classes. We performed our experiments on two publicly available datasets: Pascal VOC and MS-COCO. The experimental results on public benchmark dataset is reported in Sec 4. Further we extend this work by considering all frequently objects as unlabeled and what if they are occluded as well.
Related papers
- SDLNet: Statistical Deep Learning Network for Co-Occurring Object Detection and Identification [1.6037279419318131]
We propose a novel framework called SDLNet that identifies co-occurring objects in conjunction with base objects in multilabel object categories.
SDLNet is evaluated on two publicly available datasets: Pascal VOC and MS-COCO.
arXiv Detail & Related papers (2024-07-24T22:21:35Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Learning from Pseudo-labeled Segmentation for Multi-Class Object
Counting [35.652092907690694]
Class-agnostic counting (CAC) has numerous potential applications across various domains.
The goal is to count objects of an arbitrary category during testing, based on only a few annotated exemplars.
We show that the segmentation model trained on these pseudo-labeled masks can effectively localize objects of interest for an arbitrary multi-class image.
arXiv Detail & Related papers (2023-07-15T01:33:19Z) - Learning to Discover and Detect Objects [43.52208526783969]
We tackle the problem of novel class discovery, detection, and localization (NCDL)
In this setting, we assume a source dataset with labels for objects of commonly observed classes.
By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes.
arXiv Detail & Related papers (2022-10-19T17:59:55Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
Deep neural networks (DNNs) are usually trained on a closed set of semantic classes.
They are ill-equipped to handle previously-unseen objects.
detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving.
arXiv Detail & Related papers (2021-04-30T07:58:19Z) - Class-agnostic Object Detection [16.97782147401037]
We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes.
Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes.
We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain.
arXiv Detail & Related papers (2020-11-28T19:22:38Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.