Speeding Up Path Planning via Reinforcement Learning in MCTS for Automated Parking
- URL: http://arxiv.org/abs/2403.17234v1
- Date: Mon, 25 Mar 2024 22:21:23 GMT
- Title: Speeding Up Path Planning via Reinforcement Learning in MCTS for Automated Parking
- Authors: Xinlong Zheng, Xiaozhou Zhang, Donghao Xu,
- Abstract summary: We propose a reinforcement learning pipeline with a Monte Carlo tree search under the path planning framework.
By iteratively learning the value of a state, we are able to model a value estimator and a policy generator for given states.
- Score: 3.750010944080163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address a method that integrates reinforcement learning into the Monte Carlo tree search to boost online path planning under fully observable environments for automated parking tasks. Sampling-based planning methods under high-dimensional space can be computationally expensive and time-consuming. State evaluation methods are useful by leveraging the prior knowledge into the search steps, making the process faster in a real-time system. Given the fact that automated parking tasks are often executed under complex environments, a solid but lightweight heuristic guidance is challenging to compose in a traditional analytical way. To overcome this limitation, we propose a reinforcement learning pipeline with a Monte Carlo tree search under the path planning framework. By iteratively learning the value of a state and the best action among samples from its previous cycle's outcomes, we are able to model a value estimator and a policy generator for given states. By doing that, we build up a balancing mechanism between exploration and exploitation, speeding up the path planning process while maintaining its quality without using human expert driver data.
Related papers
- AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
We propose a method to employ a trained deep reinforcement learning policy for dedicated high-level behavior planning.
To the best of our knowledge, this work is the first to apply deep reinforcement learning in this manner.
arXiv Detail & Related papers (2023-04-17T13:49:55Z) - Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
We propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks.
We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems.
Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods.
arXiv Detail & Related papers (2023-02-17T18:18:27Z) - Spatiotemporal Costmap Inference for MPC via Deep Inverse Reinforcement
Learning [27.243603228431564]
We propose a new IRLRL algorithm that learns a goal-conditionedtemporal reward function.
The resulting costmap is used by Model Predictive Controllers (MPCs) to perform a task.
arXiv Detail & Related papers (2022-01-17T17:36:29Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS) is a learning and planning procedure that combines generative models learned offline with online model-based POMDP planning.
VTS bridges offline model training and online planning by utilizing a set of deep generative observation models to predict and evaluate the likelihood of image observations in a Monte Carlo tree search planner.
We show that VTS is robust to different observation noises and, since it utilizes online, model-based planning, can adapt to different reward structures without the need to re-train.
arXiv Detail & Related papers (2021-12-17T11:53:31Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
We propose a new approach for informative path planning based on deep reinforcement learning (RL)
Our method combines Monte Carlo tree search with an offline-learned neural network predicting informative sensing actions.
By deploying the trained network during a mission, our method enables sample-efficient online replanning on physical platforms with limited computational resources.
arXiv Detail & Related papers (2021-09-28T09:00:55Z) - PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms [59.3879573040863]
Path planning is a key component in mobile robotics.
Few attempts have been made to benchmark the algorithms holistically or unify their interface.
This paper presents PathBench, a platform for developing, visualizing, training, testing, and benchmarking of existing and future path planning algorithms.
arXiv Detail & Related papers (2021-05-04T21:48:18Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning [0.0]
We show how experiences in the form of a Deep Q-Network can be integrated as optimal policy in a search algorithm.
Our method may encourage further investigation of the applicability of reinforcement-learning-based planning in the field of self-driving vehicles.
arXiv Detail & Related papers (2021-02-05T12:08:11Z) - A Self-Supervised Learning Approach to Rapid Path Planning for Car-Like
Vehicles Maneuvering in Urban Environment [3.867363075280544]
We introduce a novel neural network-based method for path planning, which employs a gradient-based self-supervised learning algorithm to predict feasible paths.
This approach strongly exploits the experience gained in the past and rapidly yields feasible maneuver plans for car-like vehicles with limited steering-angle.
arXiv Detail & Related papers (2020-03-02T14:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.