Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing
- URL: http://arxiv.org/abs/2109.13570v1
- Date: Tue, 28 Sep 2021 09:00:55 GMT
- Title: Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing
- Authors: Julius R\"uckin, Liren Jin, Marija Popovi\'c
- Abstract summary: We propose a new approach for informative path planning based on deep reinforcement learning (RL)
Our method combines Monte Carlo tree search with an offline-learned neural network predicting informative sensing actions.
By deploying the trained network during a mission, our method enables sample-efficient online replanning on physical platforms with limited computational resources.
- Score: 2.6519061087638014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerial robots are increasingly being utilized for a wide range of
environmental monitoring and exploration tasks. However, a key challenge is
efficiently planning paths to maximize the information value of acquired data
as an initially unknown environment is explored. To address this, we propose a
new approach for informative path planning (IPP) based on deep reinforcement
learning (RL). Bridging the gap between recent advances in RL and robotic
applications, our method combines Monte Carlo tree search with an
offline-learned neural network predicting informative sensing actions. We
introduce several components making our approach applicable for robotic tasks
with continuous high-dimensional state spaces and large action spaces. By
deploying the trained network during a mission, our method enables
sample-efficient online replanning on physical platforms with limited
computational resources. Evaluations using synthetic data show that our
approach performs on par with existing information-gathering methods while
reducing runtime by a factor of 8-10. We validate the performance of our
framework using real-world surface temperature data from a crop field.
Related papers
- PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
arXiv Detail & Related papers (2024-08-07T19:30:08Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning [22.48658555542736]
Key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations.
We propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments.
arXiv Detail & Related papers (2024-02-07T14:24:41Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
arXiv Detail & Related papers (2022-03-03T11:03:28Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
We show that the Curious Sample Planner can efficiently discover temporally-extended plans for solving a wide range of physically realistic 3D tasks.
In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples.
arXiv Detail & Related papers (2020-04-22T21:47:29Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.