Not All Federated Learning Algorithms Are Created Equal: A Performance Evaluation Study
- URL: http://arxiv.org/abs/2403.17287v1
- Date: Tue, 26 Mar 2024 00:33:49 GMT
- Title: Not All Federated Learning Algorithms Are Created Equal: A Performance Evaluation Study
- Authors: Gustav A. Baumgart, Jaemin Shin, Ali Payani, Myungjin Lee, Ramana Rao Kompella,
- Abstract summary: Federated Learning (FL) emerged as a practical approach to training a model from decentralized data.
To bridge this gap, we conduct extensive performance evaluation on several canonical FL algorithms.
Our comprehensive measurement study reveals that no single algorithm works best across different performance metrics.
- Score: 1.9265466185360185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) emerged as a practical approach to training a model from decentralized data. The proliferation of FL led to the development of numerous FL algorithms and mechanisms. Many prior efforts have given their primary focus on accuracy of those approaches, but there exists little understanding of other aspects such as computational overheads, performance and training stability, etc. To bridge this gap, we conduct extensive performance evaluation on several canonical FL algorithms (FedAvg, FedProx, FedYogi, FedAdam, SCAFFOLD, and FedDyn) by leveraging an open-source federated learning framework called Flame. Our comprehensive measurement study reveals that no single algorithm works best across different performance metrics. A few key observations are: (1) While some state-of-the-art algorithms achieve higher accuracy than others, they incur either higher computation overheads (FedDyn) or communication overheads (SCAFFOLD). (2) Recent algorithms present smaller standard deviation in accuracy across clients than FedAvg, indicating that the advanced algorithms' performances are stable. (3) However, algorithms such as FedDyn and SCAFFOLD are more prone to catastrophic failures without the support of additional techniques such as gradient clipping. We hope that our empirical study can help the community to build best practices in evaluating FL algorithms.
Related papers
- Where is the Testbed for my Federated Learning Research? [3.910931245706272]
We present CoLExT, a real-world testbed for federated learning (FL) research.
CoLExT is designed to streamline experimentation with custom FL algorithms in a rich testbed configuration space.
Through an initial investigation involving popular FL algorithms running on CoLExT, we reveal previously unknown trade-offs, inefficiencies, and programming bugs.
arXiv Detail & Related papers (2024-07-19T09:34:04Z) - Federated Ensemble YOLOv5 -- A Better Generalized Object Detection
Algorithm [0.0]
Federated learning (FL) has gained significant traction as a privacy-preserving algorithm.
This paper examines the application of FL to object detection as a method to enhance generalizability.
arXiv Detail & Related papers (2023-06-30T17:50:00Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted
Dual Averaging [104.41634756395545]
Federated learning (FL) is an emerging learning paradigm to tackle massively distributed data.
We propose textbfFedDA, a novel framework for local adaptive gradient methods.
We show that textbfFedDA-MVR is the first adaptive FL algorithm that achieves this rate.
arXiv Detail & Related papers (2023-02-13T05:10:30Z) - FLAGS Framework for Comparative Analysis of Federated Learning
Algorithms [0.0]
This work consolidates the Federated Learning landscape and offers an objective analysis of the major FL algorithms.
To enable a uniform assessment, a multi-FL framework named FLAGS: Federated Learning AlGorithms Simulation has been developed.
Our experiments indicate that fully decentralized FL algorithms achieve comparable accuracy under multiple operating conditions.
arXiv Detail & Related papers (2022-12-14T12:08:30Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Local Stochastic Bilevel Optimization with Momentum-Based Variance
Reduction [104.41634756395545]
We study Federated Bilevel Optimization problems. Specifically, we first propose the FedBiO, a deterministic gradient-based algorithm.
We show FedBiO has complexity of $O(epsilon-1.5)$.
Our algorithms show superior performances compared to other baselines in numerical experiments.
arXiv Detail & Related papers (2022-05-03T16:40:22Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Fast Federated Learning in the Presence of Arbitrary Device
Unavailability [26.368873771739715]
Federated Learning (FL) coordinates heterogeneous devices to collaboratively train a shared model while preserving user privacy.
One challenge arises when devices drop out of the training process beyond the central server.
We propose Im Federated Apatientaging (MIFA) to solve this problem.
arXiv Detail & Related papers (2021-06-08T07:46:31Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.