論文の概要: The Pursuit of Fairness in Artificial Intelligence Models: A Survey
- arxiv url: http://arxiv.org/abs/2403.17333v1
- Date: Tue, 26 Mar 2024 02:33:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:55:40.565130
- Title: The Pursuit of Fairness in Artificial Intelligence Models: A Survey
- Title(参考訳): 人工知能モデルにおけるフェアネスの探索:サーベイ
- Authors: Tahsin Alamgir Kheya, Mohamed Reda Bouadjenek, Sunil Aryal,
- Abstract要約: この調査は、研究者がAIシステムの公正性を促進する方法の相乗効果を提供する。
AIモデルのバイアスを軽減するために研究者が採用したアプローチとテクニックについて、徹底的な研究がなされている。
また、偏見付きモデルがユーザエクスペリエンスに与える影響や、そのようなモデルの開発とデプロイにおいて考慮すべき倫理的考慮についても調べます。
- 参考スコア(独自算出の注目度): 2.124791625488617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) models are now being utilized in all facets of our lives such as healthcare, education and employment. Since they are used in numerous sensitive environments and make decisions that can be life altering, potential biased outcomes are a pressing matter. Developers should ensure that such models don't manifest any unexpected discriminatory practices like partiality for certain genders, ethnicities or disabled people. With the ubiquitous dissemination of AI systems, researchers and practitioners are becoming more aware of unfair models and are bound to mitigate bias in them. Significant research has been conducted in addressing such issues to ensure models don't intentionally or unintentionally perpetuate bias. This survey offers a synopsis of the different ways researchers have promoted fairness in AI systems. We explore the different definitions of fairness existing in the current literature. We create a comprehensive taxonomy by categorizing different types of bias and investigate cases of biased AI in different application domains. A thorough study is conducted of the approaches and techniques employed by researchers to mitigate bias in AI models. Moreover, we also delve into the impact of biased models on user experience and the ethical considerations to contemplate when developing and deploying such models. We hope this survey helps researchers and practitioners understand the intricate details of fairness and bias in AI systems. By sharing this thorough survey, we aim to promote additional discourse in the domain of equitable and responsible AI.
- Abstract(参考訳): 人工知能(AI)モデルは、現在、医療、教育、雇用など、私たちの生活のあらゆる面で利用されています。
多くのセンシティブな環境で使われ、人生を変える可能性のある決定を下すため、潜在的な偏見のある結果がプレッシャーとなる。
開発者は、そのようなモデルが特定の性別、民族、または障害者の偏見のような予期せぬ差別行為を起こさないようにしなければならない。
ユビキタスなAIシステムの普及に伴い、研究者や実践者は不公平なモデルに気付き、偏見を和らげる傾向にある。
このような問題に対処するために、モデルが意図的または意図せずにバイアスを持続しないよう、重要な研究がなされている。
この調査は、研究者がAIシステムの公正性を促進する方法の相乗効果を提供する。
本稿は、現在の文献に存在する公平性の異なる定義について考察する。
我々は、異なる種類のバイアスを分類し、異なるアプリケーションドメインにおけるバイアスAIのケースを調査することによって、包括的な分類を作成する。
AIモデルのバイアスを軽減するために研究者が採用したアプローチとテクニックについて、徹底的な研究がなされている。
さらに,バイアスモデルがユーザエクスペリエンスに与える影響や,そのようなモデルの開発と展開において考慮すべき倫理的考察についても検討する。
この調査は、研究者や実践者がAIシステムの公平さと偏見の複雑な詳細を理解するのに役立つことを願っている。
この徹底的な調査を共有することで、公平で責任あるAIの領域におけるさらなる議論を促進することを目指している。
関連論文リスト
- Fairness and Bias in Multimodal AI: A Survey [0.20971479389679337]
人工知能(AI)システムにおける公平性とバイアスに対処することの重要性は、過度に強調できない。
我々は,LMM(Large Multimodal Model)における,LMM(Large Language Model)とLLM(Large Language Model)の比較的最小の妥当性と偏見について,ギャップを埋める。
我々は、両方のタイプのAIに関連するデータセットとモデルの50例と、それらに影響を与えるバイアスの課題を提示します。
論文 参考訳(メタデータ) (2024-06-27T11:26:17Z) - The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices [2.28438857884398]
この研究は、AI研究とデータ豊か化のために、同等な研究倫理要件と規範がどのように開発されたか、そしてどの程度まで調査する。
主要なAI会場は、人間のデータ収集のためのプロトコルを確立し始めているが、これらは矛盾なく著者が追従している。
論文 参考訳(メタデータ) (2023-06-01T16:12:55Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
この調査論文は、AIの公平性とバイアスに関する簡潔で包括的な概要を提供する。
我々は、データ、アルゴリズム、人間の決定バイアスなどのバイアス源をレビューする。
偏りのあるAIシステムの社会的影響を評価し,不平等の持続性と有害なステレオタイプの強化に着目した。
論文 参考訳(メタデータ) (2023-04-16T03:23:55Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Debiasing Methods for Fairer Neural Models in Vision and Language
Research: A Survey [3.4767443062432326]
フェアネスを意識したニューラルネットワークの主なデバイアス法について,詳細な概要を述べる。
本研究では,公平性に関する嫌悪法に関する文献を整理する新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-11-10T14:42:46Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
機械学習の応用は、私たちの社会でますます広まりつつある。
リスクは、データに埋め込まれたバイアスを体系的に広めることである。
本稿では,特定の種類のバイアスとその組み合わせで合成データを生成するフレームワークを導入することにより,バイアスを分析することを提案する。
論文 参考訳(メタデータ) (2022-09-13T11:18:50Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
公平なHIN表現学習のための包括的非バイアス化手法を提案する。
これらのアルゴリズムの挙動,特にフェアネスと予測精度のトレードオフをバランスさせる能力について検討した。
キャリアカウンセリングの自動化アプリケーションにおいて,提案手法の性能を評価する。
論文 参考訳(メタデータ) (2021-04-18T08:28:18Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Indecision Modeling [50.00689136829134]
AIシステムは人間の価値観に合わせて行動することが重要である。
人々はしばしば決定的ではなく、特に彼らの決定が道徳的な意味を持つときです。
論文 参考訳(メタデータ) (2020-12-15T18:32:37Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。