Number of bits returned by a quantum estimation
- URL: http://arxiv.org/abs/2403.17345v2
- Date: Sat, 14 Sep 2024 14:25:17 GMT
- Title: Number of bits returned by a quantum estimation
- Authors: Xi Lu, Wojciech Górecki, Chiara Macchiavello, Lorenzo Maccone,
- Abstract summary: We give two upper bounds to the mutual information in arbitrary quantum estimation strategies.
We illustrate the usefulness of these bounds by characterizing the quantum phase estimation algorithm in the presence of noise.
- Score: 1.9865335779110387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give two upper bounds to the mutual information in arbitrary quantum estimation strategies. The first is based on some simple Fourier properties of the estimation apparatus. The second is derived using the first but, interestingly, depends only on the Fisher information of the parameter, so it is valid even beyond quantum estimation. We illustrate the usefulness of these bounds by characterizing the quantum phase estimation algorithm in the presence of noise. In addition, for the noiseless case, we extend the analysis beyond applying the bound and we discuss the optimal entangled and adaptive strategies, clarifying inaccuracies appearing on this topic in the literature.
Related papers
- Adaptive measurement strategy for noisy quantum amplitude estimation with variational quantum circuits [0.3148661669593152]
This paper studies the amplitude estimation in the presence of depolarizing noise with unknown intensity.
We numerically show that the proposed method can nearly attain the quantum Cram'er-Rao bound (QCRB)
arXiv Detail & Related papers (2024-05-24T03:15:56Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
We introduce an algorithm for data quantization based on the principles of Kashin representation.
Our findings demonstrate that Kashin Quantization achieves competitive or superior quality in model performance.
arXiv Detail & Related papers (2024-04-15T12:38:46Z) - Two-stage Quantum Estimation and the Asymptotics of Quantum-enhanced
Transmittance Sensing [2.5449435573379757]
Quantum Cram'er-Rao bound is the ultimate limit of the mean squared error for unbiased estimation of an unknown parameter embedded in a quantum state.
We apply our results to the cost of quantum-enhanced transmittance sensing.
arXiv Detail & Related papers (2024-02-27T22:28:42Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Quantum Augmented Dual Attack [8.134961550216618]
We present a quantum augmented variant of the dual lattice attack on the Learning with Errors (LWE) problem, using classical memory with quantum random access (QRACM)
Applying our results to lattice parameters from the literature, we find that our algorithm outperforms previous algorithms, assuming unit cost access to a QRACM.
arXiv Detail & Related papers (2022-05-27T13:54:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Near-Optimal Quantum Algorithms for Multivariate Mean Estimation [0.0]
We propose the first near-optimal quantum algorithm for estimating in Euclidean norm the mean of a vector-valued random variable.
We exploit a variety of additional algorithmic techniques such as amplitude amplification, the Bernstein-Vazirani algorithm, and quantum singular value transformation.
arXiv Detail & Related papers (2021-11-18T16:35:32Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Quantum computing critical exponents [0.0]
We show that the Variational Quantum-Classical Simulation algorithm admits a finite circuit depth scaling collapse when targeting the critical point of the transverse field Ising chain.
The order parameter only collapses on one side of the transition due to a slowdown of the quantum algorithm when crossing the phase transition.
arXiv Detail & Related papers (2021-04-02T17:38:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.