Two-stage Quantum Estimation and the Asymptotics of Quantum-enhanced
Transmittance Sensing
- URL: http://arxiv.org/abs/2402.17922v1
- Date: Tue, 27 Feb 2024 22:28:42 GMT
- Title: Two-stage Quantum Estimation and the Asymptotics of Quantum-enhanced
Transmittance Sensing
- Authors: Zihao Gong and Boulat A. Bash
- Abstract summary: Quantum Cram'er-Rao bound is the ultimate limit of the mean squared error for unbiased estimation of an unknown parameter embedded in a quantum state.
We apply our results to the cost of quantum-enhanced transmittance sensing.
- Score: 2.5449435573379757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Cram\'er-Rao bound is the ultimate limit of the mean squared error
for unbiased estimation of an unknown parameter embedded in a quantum state.
While it can be achieved asymptotically for large number of quantum state
copies, the measurement required often depends on the true value of the
parameter of interest. This paradox was addressed by Hayashi and Matsumoto
using a two-stage approach in 2005. Unfortunately, their analysis imposes
conditions that severely restrict the class of classical estimators applied to
the quantum measurement outcomes, hindering applications of this method. We
relax these conditions to substantially broaden the class of usable estimators
at the cost of slightly weakening the asymptotic properties of the two-stage
method. We apply our results to obtain the asymptotics of quantum-enhanced
transmittance sensing.
Related papers
- Efficient Gradient Estimation of Variational Quantum Circuits with Lie Algebraic Symmetries [16.4882269584049]
We develop an efficient framework that makes the Hadamard test efficiently applicable to gradient estimation for a broad range of quantum systems.
This is an exponential reduction in the measurement cost and up in time compared to existing works.
arXiv Detail & Related papers (2024-04-07T23:34:51Z) - Evaluating the quantum optimal biased bound in a unitary evolution
process [12.995137315679923]
We introduce two effective error bounds for biased estimators based on a unitary evolution process.
We show their estimation performance by two specific examples of the unitary evolution process.
arXiv Detail & Related papers (2023-09-09T02:15:37Z) - Hierarchies of Frequentist Bounds for Quantum Metrology: From
Cram\'er-Rao to Barankin [0.0]
We obtain hierarchies of increasingly tight bounds that include the quantum Cram'er-Rao bound at the lowest order.
Results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions.
arXiv Detail & Related papers (2023-03-10T17:55:52Z) - Finitely Repeated Adversarial Quantum Hypothesis Testing [22.102728605081534]
We formulate a passive quantum detector based on a quantum hypothesis testing framework under the setting of finite sample size.
Under the assumption that the attacker adopts separable optimal strategies, we derive that the worst-case average error bound converges to zero exponentially.
We adopt our formulations upon a case study of detection with quantum radars.
arXiv Detail & Related papers (2022-12-02T17:08:17Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Transmission Estimation at the Fundamental Quantum Cram\'er-Rao Bound
with Macroscopic Quantum Light [0.0]
We show that it is possible to perform measurements with the required precision to do so.
For our largest transmission level of 84%, we show a 62% reduction over the optimal classical protocol in the variance in transmission estimation.
arXiv Detail & Related papers (2022-01-21T21:50:24Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.