論文の概要: LM-Combiner: A Contextual Rewriting Model for Chinese Grammatical Error Correction
- arxiv url: http://arxiv.org/abs/2403.17413v1
- Date: Tue, 26 Mar 2024 06:12:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:36:05.426608
- Title: LM-Combiner: A Contextual Rewriting Model for Chinese Grammatical Error Correction
- Title(参考訳): LM-Combiner:中国語文法誤り訂正のための文脈書き換えモデル
- Authors: Yixuan Wang, Baoxin Wang, Yijun Liu, Dayong Wu, Wanxiang Che,
- Abstract要約: 過剰補正は中国の文法的誤り訂正(CGEC)タスクにおいて重要な問題である。
モデルアンサンブル法による最近の研究は、過剰補正を効果的に軽減し、ECCシステムの精度を向上させることができる。
本稿では,GECシステム出力の過度補正をモデルアンサンブルなしで直接修正できる書き換えモデルLM-Combinerを提案する。
- 参考スコア(独自算出の注目度): 49.0746090186582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over-correction is a critical problem in Chinese grammatical error correction (CGEC) task. Recent work using model ensemble methods based on voting can effectively mitigate over-correction and improve the precision of the GEC system. However, these methods still require the output of several GEC systems and inevitably lead to reduced error recall. In this light, we propose the LM-Combiner, a rewriting model that can directly modify the over-correction of GEC system outputs without a model ensemble. Specifically, we train the model on an over-correction dataset constructed through the proposed K-fold cross inference method, which allows it to directly generate filtered sentences by combining the original and the over-corrected text. In the inference stage, we directly take the original sentences and the output results of other systems as input and then obtain the filtered sentences through LM-Combiner. Experiments on the FCGEC dataset show that our proposed method effectively alleviates the over-correction of the original system (+18.2 Precision) while ensuring the error recall remains unchanged. Besides, we find that LM-Combiner still has a good rewriting performance even with small parameters and few training data, and thus can cost-effectively mitigate the over-correction of black-box GEC systems (e.g., ChatGPT).
- Abstract(参考訳): 過剰補正は中国の文法的誤り訂正(CGEC)タスクにおいて重要な問題である。
投票に基づくモデルアンサンブルを用いた最近の研究は、過剰補正を効果的に軽減し、ECCシステムの精度を向上させることができる。
しかしながら、これらの方法はいくつかのGECシステムの出力を必要としており、必然的にエラーリコールの削減につながる。
本稿では,GEC出力の過度補正をモデルアンサンブルなしで直接修正できる書き換えモデルLM-Combinerを提案する。
具体的には、提案したK-fold Cross Inference法によって構築されたオーバー補正データセットに基づいてモデルをトレーニングし、オリジナルテキストとオーバー修正テキストを組み合わせることで、フィルタ文を直接生成することができる。
推論段階では、他のシステムの原文と出力結果を直接入力とし、LM-Combinerを通してフィルタ文を取得する。
FCGECデータセットを用いた実験により,提案手法は誤りの再現性を維持しつつ,元のシステム(+18.2精度)の過度な補正を効果的に緩和することを示した。
さらに, LM-Combiner は小さいパラメータと少ないトレーニングデータでも良好な書き換え性能を有しており, ブラックボックス GEC システムの過度な補正 (ChatGPT など) をコスト効率よく緩和できることがわかった。
関連論文リスト
- Efficient and Interpretable Grammatical Error Correction with Mixture of Experts [33.748193858033346]
文法的誤り訂正のための混合専門家モデルMoECEを提案する。
本モデルでは,有効パラメータの3倍少ないT5-XLの性能を実現する。
論文 参考訳(メタデータ) (2024-10-30T23:27:54Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
本稿では,エンティティ検索後処理に基づく効率的な事実誤り訂正システムRFECを提案する。
RFECは、原文と対象要約とを比較して、原文から証拠文を検索する。
次に、RFECは、エビデンス文を考慮し、要約中のエンティティレベルのエラーを検出し、エビデンス文から正確なエンティティに置換する。
論文 参考訳(メタデータ) (2022-04-18T11:35:02Z) - Error Correction in ASR using Sequence-to-Sequence Models [32.41875780785648]
自動音声認識における後編集では、ASRシステムによって生成された共通および系統的な誤りを自動的に修正する必要がある。
本稿では,事前学習型シーケンス・ツー・シーケンス・モデルであるBARTを用いて,デノナイジングモデルとして機能することを提案する。
アクセント付き音声データによる実験結果から,ASRの誤りを効果的に修正できることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T17:32:59Z) - LM-Critic: Language Models for Unsupervised Grammatical Error Correction [128.9174409251852]
文を文法的に判断する LM-Critic の定義において,事前訓練された言語モデル (LM) の活用法を示す。
このLM-Critic と BIFI と、ラベルなし文の集合を併用して、現実的な非文法的/文法的ペアをブートストラップし、修正子を訓練する。
論文 参考訳(メタデータ) (2021-09-14T17:06:43Z) - Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese
Grammatical Error Correction [49.25830718574892]
本稿では,Tail-to-Tail (textbfTtT) という新しいフレームワークを提案する。
ほとんどのトークンが正しいので、ソースからターゲットに直接転送でき、エラー位置を推定して修正することができる。
標準データセット、特に可変長データセットに関する実験結果は、文レベルの精度、精度、リコール、F1-Measureの観点からTtTの有効性を示す。
論文 参考訳(メタデータ) (2021-06-03T05:56:57Z) - Grammatical Error Correction as GAN-like Sequence Labeling [45.19453732703053]
本稿では,Gumbel-Softmaxサンプリングをジェネレータとする文法的誤り検出器と文法的誤り検出器とからなるGANライクなシーケンスラベリングモデルを提案する。
いくつかの評価ベンチマークの結果、提案手法は有効であり、従来の最先端のベースラインを改善することが示されている。
論文 参考訳(メタデータ) (2021-05-29T04:39:40Z) - Improving the Efficiency of Grammatical Error Correction with Erroneous
Span Detection and Correction [106.63733511672721]
ESD(Eroneous Span Detection)とESC(Eroneous Span Correction)の2つのサブタスクに分割することで、文法的誤り訂正(GEC)の効率を改善するための言語に依存しない新しいアプローチを提案する。
ESDは、効率的なシーケンスタグ付けモデルを用いて文法的に誤りテキストスパンを識別する。ESCは、Seq2seqモデルを利用して、注釈付き誤字スパンの文を入力として取り、これらのスパンの修正テキストのみを出力する。
実験の結果,提案手法は英語と中国語のGECベンチマークにおいて従来のセク2seq手法と同等に動作し,推論に要するコストは50%以下であった。
論文 参考訳(メタデータ) (2020-10-07T08:29:11Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
既存の文法的誤り訂正(GEC)のアプローチは、手動で作成したGECデータセットによる教師あり学習に依存している。
誤りが不適切に編集されたり、修正されなかったりする「ノイズ」は無視できないほどある。
本稿では,既存のモデルの予測整合性を利用して,これらのデータセットをデノマイズする自己補充手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T04:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。