The Privacy Policy Permission Model: A Unified View of Privacy Policies
- URL: http://arxiv.org/abs/2403.17414v1
- Date: Tue, 26 Mar 2024 06:12:38 GMT
- Title: The Privacy Policy Permission Model: A Unified View of Privacy Policies
- Authors: Maryam Majedi, Ken Barker,
- Abstract summary: A privacy policy is a set of statements that specifies how an organization gathers, uses, discloses, and maintains a client's data.
Most privacy policies lack a clear, complete explanation of how data providers' information is used.
We propose a modeling methodology, called the Privacy Policy Permission Model (PPPM), that provides a uniform, easy-to-understand representation of privacy policies.
- Score: 0.5371337604556311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Organizations use privacy policies to communicate their data collection practices to their clients. A privacy policy is a set of statements that specifies how an organization gathers, uses, discloses, and maintains a client's data. However, most privacy policies lack a clear, complete explanation of how data providers' information is used. We propose a modeling methodology, called the Privacy Policy Permission Model (PPPM), that provides a uniform, easy-to-understand representation of privacy policies, which can accurately and clearly show how data is used within an organization's practice. Using this methodology, a privacy policy is captured as a diagram. The diagram is capable of highlighting inconsistencies and inaccuracies in the privacy policy. The methodology supports privacy officers in properly and clearly articulating an organization's privacy policy.
Related papers
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
This chapter is meant to be part of the book "Differential Privacy in Artificial Intelligence: From Theory to Practice"
It starts by illustrating various attempts to protect data privacy, emphasizing where and why they failed.
It then defines the key actors, tasks, and scopes that make up the domain of privacy-preserving data analysis.
arXiv Detail & Related papers (2024-11-07T13:52:11Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
Security measures such as anonymization are needed to protect individuals' privacy.
Within our study, we conducted expert interviews to gain insights into practices in the field.
We survey privacy-enhancing methods in use, which generally do not comply with state-of-the-art standards of differential privacy.
arXiv Detail & Related papers (2024-07-04T08:29:27Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Legally Binding but Unfair? Towards Assessing Fairness of Privacy Policies [0.0]
Privacy policies are expected to inform data subjects about their data protection rights and explain data management practices.
This implies that a privacy policy is written in a fair way, e.g., it does not use polarizing terms, does not require a certain education, or does not assume a particular social background.
We identify from fundamental legal sources and fairness research, how the dimensions informational fairness, representational fairness and ethics / morality are related to privacy policies.
We propose options to automatically assess policies in these fairness dimensions, based on text statistics, linguistic methods and artificial intelligence.
arXiv Detail & Related papers (2024-03-12T22:53:32Z) - PLUE: Language Understanding Evaluation Benchmark for Privacy Policies
in English [77.79102359580702]
We introduce the Privacy Policy Language Understanding Evaluation benchmark, a multi-task benchmark for evaluating the privacy policy language understanding.
We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training.
We demonstrate that domain-specific continual pre-training offers performance improvements across all tasks.
arXiv Detail & Related papers (2022-12-20T05:58:32Z) - Exploring Consequences of Privacy Policies with Narrative Generation via
Answer Set Programming [0.0]
We present a framework that uses Answer Set Programming (ASP) to formalize privacy policies.
ASP allows end-users to forward-simulate possible consequences of the policy in terms of actors.
We demonstrate through the example of the Health Insurance Portability and Accountability Act how to use the system in various ways.
arXiv Detail & Related papers (2022-12-13T16:44:46Z) - Compliance Checking with NLI: Privacy Policies vs. Regulations [0.0]
We use Natural Language Inference techniques to compare privacy regulations against sections of privacy policies from a selection of large companies.
Our model uses pre-trained embeddings, along with BiLSTM in its attention mechanism.
arXiv Detail & Related papers (2022-03-01T17:27:16Z) - Detecting Compliance of Privacy Policies with Data Protection Laws [0.0]
Privacy policies are often written in extensive legal jargon that is difficult to understand.
We aim to bridge that gap by providing a framework that analyzes privacy policies in light of various data protection laws.
By using such a tool, users would be better equipped to understand how their personal data is managed.
arXiv Detail & Related papers (2021-02-21T09:15:15Z) - The Challenges and Impact of Privacy Policy Comprehension [0.0]
This paper experimentally manipulated the privacy-friendliness of an unavoidable and simple privacy policy.
Half of our participants miscomprehended even this transparent privacy policy.
To mitigate such pitfalls we present design recommendations to improve the quality of informed consent.
arXiv Detail & Related papers (2020-05-18T14:16:48Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.