Differential Privacy Overview and Fundamental Techniques
- URL: http://arxiv.org/abs/2411.04710v1
- Date: Thu, 07 Nov 2024 13:52:11 GMT
- Title: Differential Privacy Overview and Fundamental Techniques
- Authors: Ferdinando Fioretto, Pascal Van Hentenryck, Juba Ziani,
- Abstract summary: This chapter is meant to be part of the book "Differential Privacy in Artificial Intelligence: From Theory to Practice"
It starts by illustrating various attempts to protect data privacy, emphasizing where and why they failed.
It then defines the key actors, tasks, and scopes that make up the domain of privacy-preserving data analysis.
- Score: 63.0409690498569
- License:
- Abstract: This chapter is meant to be part of the book "Differential Privacy in Artificial Intelligence: From Theory to Practice" and provides an introduction to Differential Privacy. It starts by illustrating various attempts to protect data privacy, emphasizing where and why they failed, and providing the key desiderata of a robust privacy definition. It then defines the key actors, tasks, and scopes that make up the domain of privacy-preserving data analysis. Following that, it formalizes the definition of Differential Privacy and its inherent properties, including composition, post-processing immunity, and group privacy. The chapter also reviews the basic techniques and mechanisms commonly used to implement Differential Privacy in its pure and approximate forms.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation and Blackwell's Theorem [30.365274034429508]
We argue that differential privacy can be considered a textitpure statistical concept.
$f$-differential privacy is a unified framework for analyzing privacy bounds in data analysis and machine learning.
arXiv Detail & Related papers (2024-09-14T23:47:22Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
We design and evaluate new explanations of differential privacy for the local and central models.
We find that consequences-focused explanations in the style of privacy nutrition labels are a promising approach for setting accurate privacy expectations.
arXiv Detail & Related papers (2024-08-16T01:21:57Z) - On Differentially Private Online Predictions [74.01773626153098]
We introduce an interactive variant of joint differential privacy towards handling online processes.
We demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing.
We then study the cost of interactive joint privacy in the basic setting of online classification.
arXiv Detail & Related papers (2023-02-27T19:18:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Composition of Differential Privacy & Privacy Amplification by
Subsampling [18.397305289651907]
This chapter is meant to be part of the book "Differential Privacy for Artificial Intelligence Applications"
We give an introduction to the most important property of differential privacy -- composition.
This chapter introduces the basic concepts and gives proofs of the key results needed to apply these tools in practice.
arXiv Detail & Related papers (2022-10-02T18:22:31Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Learning With Differential Privacy [3.618133010429131]
Differential privacy comes to the rescue with a proper promise of protection against leakage.
It uses a randomized response technique at the time of collection of the data which promises strong privacy with better utility.
arXiv Detail & Related papers (2020-06-10T02:04:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.