論文の概要: Incorporating Exponential Smoothing into MLP: A Simple but Effective Sequence Model
- arxiv url: http://arxiv.org/abs/2403.17445v1
- Date: Tue, 26 Mar 2024 07:23:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:26:20.288818
- Title: Incorporating Exponential Smoothing into MLP: A Simple but Effective Sequence Model
- Title(参考訳): MLPへの指数平滑化:単純だが効果的なシーケンスモデル
- Authors: Jiqun Chu, Zuoquan Lin,
- Abstract要約: 最近開発されたStructured State Space (S4) は、長距離シーケンスをモデル化する上で大きな効果を示した。
帰納バイアスの増大と低減を目的とした指数的平滑化(ETS)を提案する。
我々のモデルはLRAベンチマークでS4に匹敵する結果を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling long-range dependencies in sequential data is a crucial step in sequence learning. A recently developed model, the Structured State Space (S4), demonstrated significant effectiveness in modeling long-range sequences. However, It is unclear whether the success of S4 can be attributed to its intricate parameterization and HiPPO initialization or simply due to State Space Models (SSMs). To further investigate the potential of the deep SSMs, we start with exponential smoothing (ETS), a simple SSM, and propose a stacked architecture by directly incorporating it into an element-wise MLP. We augment simple ETS with additional parameters and complex field to reduce the inductive bias. Despite increasing less than 1\% of parameters of element-wise MLP, our models achieve comparable results to S4 on the LRA benchmark.
- Abstract(参考訳): シーケンシャルデータにおける長距離依存関係のモデリングは、シーケンシャルラーニングの重要なステップである。
最近開発されたStructured State Space (S4) は、長距離シーケンスをモデル化する上で大きな効果を示した。
しかし、S4の成功が複雑なパラメータ化とHiPPOの初期化によるものなのか、あるいは単に状態空間モデル(SSM)によるものなのかは定かではない。
深部SSMのポテンシャルを更に研究するために,まずは単純なSSMである指数スムージング(ETS)から始め,それを要素的に直接 MLP に組み込むことにより,積み重ねたアーキテクチャを提案する。
誘導バイアスを低減するため、単純なETSをパラメータと複素場を追加して拡張する。
要素量 MLP のパラメータの 1\% 未満の増加にもかかわらず,我々のモデルは LRA ベンチマークで S4 に匹敵する結果を得た。
関連論文リスト
- Provable Benefits of Complex Parameterizations for Structured State Space Models [51.90574950170374]
構造化状態空間モデル (Structured State Space Model, SSM) は、指定された構造に固執する線形力学系である。
パラメータ化が現実の典型的なニューラルネットワークモジュールとは対照的に、SSMは複雑なパラメータ化を使用することが多い。
本稿では,実対角 SSM と複素対角 SSM の形式的ギャップを確立することにより,SSM の複雑なパラメータ化の利点を説明する。
論文 参考訳(メタデータ) (2024-10-17T22:35:50Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - SMR: State Memory Replay for Long Sequence Modeling [19.755738298836526]
本稿では並列畳み込み計算における互換性の限界を克服する新しい非再帰的非一様サンプル処理戦略を提案する。
本研究では,学習可能な記憶を利用する状態記憶再生(SMR)を導入し,学習データと異なるサンプリングポイントでの一般化のために,現在の状態を多段階情報で調整する。
自己回帰言語モデリングとLong Range Arenaにおける長距離モデリングタスクの実験は、一連のSSMモデルに対するSMRメカニズムの一般的な効果を実証している。
論文 参考訳(メタデータ) (2024-05-27T17:53:32Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
線形時間不変(LTI)システムを利用する状態空間モデル(SSM)は、長いシーケンスの学習において有効であることが知られている。
我々は,ハンケル作用素内のマルコフパラメータを利用するLTIシステムに対して,HOPEと呼ばれる新しいパラメータ化手法を開発した。
我々の新しいパラメータ化は、固定時間ウィンドウ内に非遅延メモリを付与し、パッドドノイズのあるシーケンシャルCIFAR-10タスクによって実証的に相関する。
論文 参考訳(メタデータ) (2024-05-22T20:20:14Z) - Robustifying State-space Models for Long Sequences via Approximate
Diagonalization [47.321212977509454]
状態空間モデル(SSM)は、長距離シーケンスタスクを学習するためのフレームワークとして登場した。
HiPPOフレームワークの対角化は、それ自体が不適切な問題である。
本稿では,汎用的,後方安定な「摂動対角化(PTD)」手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T23:36:13Z) - A Neural State-Space Model Approach to Efficient Speech Separation [34.38911304755453]
ニューラル状態空間モデル(SSM)に基づく新しい効率的な音声分離フレームワークであるS4Mを紹介する。
SSM手法を音声分離タスクに拡張するために、まず入力混合物を異なる解像度のマルチスケール表現に分解する。
実験の結果,S4Mは他の分離バックボーンとSI-SDRiの相容れない性能を示した。
我々のS4M-tinyモデル(1.8Mパラメータ)は、9.2の乗算演算(MAC)しか持たない雑音条件下で、注意に基づくセプフォーマ(26.0Mパラメータ)を超える。
論文 参考訳(メタデータ) (2023-05-26T13:47:11Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Liquid Structural State-Space Models [106.74783377913433]
Liquid-S4はLong-Range Arenaベンチマークで平均87.32%の性能を達成した。
全生音声コマンド認識では、データセットLiquid-S4は96.78%の精度で、S4と比較してパラメータ数が30%減少している。
論文 参考訳(メタデータ) (2022-09-26T18:37:13Z) - Simplified State Space Layers for Sequence Modeling [11.215817688691194]
近年、構造化された状態空間列層を用いたモデルが、多くの長距離タスクにおいて最先端の性能を達成している。
ハイパフォーマンスにはHiPPOフレームワークに密接に従う必要があるという考えを再考する。
我々は、S4層が使用する多くの独立したシングルインプット、シングルアウトプット(SISO)SSMのバンクを、1つのマルチインプット、マルチアウトプット(MIMO)SSMで置き換える。
S5は、Long Range Arenaベンチマークスイートで平均82.46%を達成することを含む、長距離タスクにおけるS4のパフォーマンスと一致している。
論文 参考訳(メタデータ) (2022-08-09T17:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。