論文の概要: Expectations Versus Reality: Evaluating Intrusion Detection Systems in Practice
- arxiv url: http://arxiv.org/abs/2403.17458v3
- Date: Thu, 28 Mar 2024 09:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 10:59:24.945952
- Title: Expectations Versus Reality: Evaluating Intrusion Detection Systems in Practice
- Title(参考訳): 期待対現実:実践における侵入検知システムの評価
- Authors: Jake Hesford, Daniel Cheng, Alan Wan, Larry Huynh, Seungho Kim, Hyoungshick Kim, Jin B. Hong,
- Abstract要約: 最高のソリューションはないが、データセット内の攻撃の種類、複雑性、ネットワーク環境など、外部変数に依存している。
ディープニューラルネットワークソリューションは、テストされたデータセットの平均F1スコアが最も高かったが、必ずしも最高のパフォーマンスであるとは限らない。
- 参考スコア(独自算出の注目度): 8.261753994969599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our paper provides empirical comparisons between recent IDSs to provide an objective comparison between them to help users choose the most appropriate solution based on their requirements. Our results show that no one solution is the best, but is dependent on external variables such as the types of attacks, complexity, and network environment in the dataset. For example, BoT_IoT and Stratosphere IoT datasets both capture IoT-related attacks, but the deep neural network performed the best when tested using the BoT_IoT dataset while HELAD performed the best when tested using the Stratosphere IoT dataset. So although we found that a deep neural network solution had the highest average F1 scores on tested datasets, it is not always the best-performing one. We further discuss difficulties in using IDS from literature and project repositories, which complicated drawing definitive conclusions regarding IDS selection.
- Abstract(参考訳): 本稿は,近年のIDS間の実証的な比較を行い,利用者が要求に応じて最適なソリューションを選択するための客観的比較を行う。
以上の結果から,攻撃の種類や複雑性,データセット内のネットワーク環境など,外部変数に依存するソリューションがひとつもないことが示唆された。
例えば、BoT_IoTとStratosphere IoTデータセットはいずれもIoT関連の攻撃をキャプチャするが、深いニューラルネットワークはBoT_IoTデータセットを使用したテストでは最高、HELADはStratosphere IoTデータセットを使用したテストでは最高だった。
したがって、ディープニューラルネットワークソリューションは、テストされたデータセットで平均的なF1スコアが高かったが、必ずしも最高のパフォーマンスであるとは限らない。
さらに、文献やプロジェクトリポジトリからIDSを使用することの難しさについても論じる。
関連論文リスト
- SudokuSens: Enhancing Deep Learning Robustness for IoT Sensing
Applications using a Generative Approach [8.647778968634595]
本稿では、機械学習ベースのIoT(Internet-of-Things)アプリケーションにおいて、トレーニングデータの自動生成のための生成フレームワークであるSudokuSensを紹介する。
このフレームワークは、結果のディープラーニングモデルの堅牢性を改善し、データ収集が高価であるIoTアプリケーションを対象としている。
論文 参考訳(メタデータ) (2024-02-03T22:08:11Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
AIベースの侵入検知システム(IDS)を分散IoTシステムに実装する一般的なアプローチは、中央集権的な方法である。
このアプローチはデータのプライバシを侵害し、IDSのスケーラビリティを禁止します。
我々は、実世界の実験代表を設計し、FLベースのIDSの性能を評価する。
論文 参考訳(メタデータ) (2023-06-05T09:08:24Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Do Deep Neural Networks Always Perform Better When Eating More Data? [82.6459747000664]
Identically Independent Distribution(IID)とOut of Distribution(OOD)による実験を設計する。
IID条件下では、情報の量は各サンプルの効果度、サンプルの寄与度、クラス間の差がクラス情報の量を決定する。
OOD条件下では、試料のクロスドメイン度が寄与を決定づけ、無関係元素によるバイアス適合はクロスドメインの重要な要素である。
論文 参考訳(メタデータ) (2022-05-30T15:40:33Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - On the Use of Interpretable Machine Learning for the Management of Data
Quality [13.075880857448059]
我々は、解釈可能な機械学習を用いて、あらゆるデータ処理アクティビティをベースとした重要な機能を提供する。
私たちの目標は、少なくとも、収集されたデータセットで重要なものとして検出される機能に対して、データ品質を確保することです。
論文 参考訳(メタデータ) (2020-07-29T08:49:32Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。