Dr.Hair: Reconstructing Scalp-Connected Hair Strands without Pre-training via Differentiable Rendering of Line Segments
- URL: http://arxiv.org/abs/2403.17496v2
- Date: Fri, 29 Mar 2024 07:38:21 GMT
- Title: Dr.Hair: Reconstructing Scalp-Connected Hair Strands without Pre-training via Differentiable Rendering of Line Segments
- Authors: Yusuke Takimoto, Hikari Takehara, Hiroyuki Sato, Zihao Zhu, Bo Zheng,
- Abstract summary: In the film and gaming industries, achieving a realistic hair appearance typically involves the use of strands originating from the scalp.
In this study, we propose an optimization-based approach that eliminates the need for pre-training.
Our method exhibits robust and accurate inverse rendering, surpassing the quality of existing methods and significantly improving processing speed.
- Score: 23.71057752711745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the film and gaming industries, achieving a realistic hair appearance typically involves the use of strands originating from the scalp. However, reconstructing these strands from observed surface images of hair presents significant challenges. The difficulty in acquiring Ground Truth (GT) data has led state-of-the-art learning-based methods to rely on pre-training with manually prepared synthetic CG data. This process is not only labor-intensive and costly but also introduces complications due to the domain gap when compared to real-world data. In this study, we propose an optimization-based approach that eliminates the need for pre-training. Our method represents hair strands as line segments growing from the scalp and optimizes them using a novel differentiable rendering algorithm. To robustly optimize a substantial number of slender explicit geometries, we introduce 3D orientation estimation utilizing global optimization, strand initialization based on Laplace's equation, and reparameterization that leverages geometric connectivity and spatial proximity. Unlike existing optimization-based methods, our method is capable of reconstructing internal hair flow in an absolute direction. Our method exhibits robust and accurate inverse rendering, surpassing the quality of existing methods and significantly improving processing speed.
Related papers
- Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
We introduce a new hair modeling method that uses a dual representation of classical hair strands and 3D Gaussians.
In contrast to recent approaches that leverage unstructured Gaussians to model human avatars, our method reconstructs the hair using 3D polylines, or strands.
Our method, named Gaussian Haircut, is evaluated on synthetic and real scenes and demonstrates state-of-the-art performance in the task of strand-based hair reconstruction.
arXiv Detail & Related papers (2024-09-23T07:49:46Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement [5.810659946867557]
Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging.
We propose a novel algorithm that progressively generates and optimize meshes from multi-view images.
Our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
arXiv Detail & Related papers (2024-08-19T16:33:17Z) - DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing [19.437747560051566]
We propose an adaptive depth loss based on the gradient of color images, improving depth estimation and novel view synthesis results over various baselines.
Our simple yet effective regularization technique enables direct mesh extraction from the Gaussian representation, yielding more physically accurate reconstructions of indoor scenes.
arXiv Detail & Related papers (2024-03-26T16:00:31Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Enhancing Surface Neural Implicits with Curvature-Guided Sampling and Uncertainty-Augmented Representations [37.42624848693373]
We introduce a method that directly digests depth images for the task of high-fidelity 3D reconstruction.
A simple sampling strategy is proposed to generate highly effective training data.
Despite its simplicity, our method outperforms a range of both classical and learning-based baselines.
arXiv Detail & Related papers (2023-06-03T12:23:17Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - What can linear interpolation of neural network loss landscapes tell us? [11.753360538833139]
Loss landscapes are notoriously difficult to visualize in a human-comprehensible fashion.
One common way to address this problem is to plot linear slices of the landscape.
arXiv Detail & Related papers (2021-06-30T11:54:04Z) - Progressive Encoding for Neural Optimization [92.55503085245304]
We show the competence of the PPE layer for mesh transfer and its advantages compared to contemporary surface mapping techniques.
Most importantly, our technique is a parameterization-free method, and thus applicable to a variety of target shape representations.
arXiv Detail & Related papers (2021-04-19T08:22:55Z) - Riggable 3D Face Reconstruction via In-Network Optimization [58.016067611038046]
This paper presents a method for riggable 3D face reconstruction from monocular images.
It jointly estimates a personalized face rig and per-image parameters including expressions, poses, and illuminations.
Experiments demonstrate that our method achieves SOTA reconstruction accuracy, reasonable robustness and generalization ability.
arXiv Detail & Related papers (2021-04-08T03:53:20Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
We propose a novel unsupervised learning approach to 3D shape correspondence.
We show that the proposed method significantly improves over the state-of-the-art on multiple datasets.
arXiv Detail & Related papers (2020-10-28T22:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.