Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification
- URL: http://arxiv.org/abs/2403.17500v1
- Date: Tue, 26 Mar 2024 08:59:37 GMT
- Title: Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification
- Authors: Hanxuan Yang, Zhaoxin Yu, Qingchao Kong, Wei Liu, Wenji Mao,
- Abstract summary: We propose the Self-Label Augmented VGAE model for inductive graph representation learning.
To leverage the label information for training, our model takes node labels as one-hot encoded inputs and then performs label reconstruction in model training.
Our proposed model archives promise results on node classification with particular superiority under semi-supervised learning settings.
- Score: 10.497590357666114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning is a fundamental research issue in various domains of applications, of which the inductive learning problem is particularly challenging as it requires models to generalize to unseen graph structures during inference. In recent years, graph neural networks (GNNs) have emerged as powerful graph models for inductive learning tasks such as node classification, whereas they typically heavily rely on the annotated nodes under a fully supervised training setting. Compared with the GNN-based methods, variational graph auto-encoders (VGAEs) are known to be more generalizable to capture the internal structural information of graphs independent of node labels and have achieved prominent performance on multiple unsupervised learning tasks. However, so far there is still a lack of work focusing on leveraging the VGAE framework for inductive learning, due to the difficulties in training the model in a supervised manner and avoiding over-fitting the proximity information of graphs. To solve these problems and improve the model performance of VGAEs for inductive graph representation learning, in this work, we propose the Self-Label Augmented VGAE model. To leverage the label information for training, our model takes node labels as one-hot encoded inputs and then performs label reconstruction in model training. To overcome the scarcity problem of node labels for semi-supervised settings, we further propose the Self-Label Augmentation Method (SLAM), which uses pseudo labels generated by our model with a node-wise masking approach to enhance the label information. Experiments on benchmark inductive learning graph datasets verify that our proposed model archives promising results on node classification with particular superiority under semi-supervised learning settings.
Related papers
- Gradformer: Graph Transformer with Exponential Decay [69.50738015412189]
Self-attention mechanism in Graph Transformers (GTs) overlooks the graph's inductive biases, particularly biases related to structure.
This paper presents Gradformer, a method innovatively integrating GT with the intrinsic inductive bias.
Gradformer consistently outperforms the Graph Neural Network and GT baseline models in various graph classification and regression tasks.
arXiv Detail & Related papers (2024-04-24T08:37:13Z) - Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level
Graph Representation Learning [9.039193854524763]
We propose the Isomorphic-Consistent VGAE (IsoC-VGAE) for task-agnostic graph representation learning.
We first devise a decoding scheme to provide a theoretical guarantee of keeping the isomorphic consistency.
We then propose the Inverse Graph Neural Network (Inv-GNN) decoder as its intuitive realization.
arXiv Detail & Related papers (2023-12-09T10:16:53Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Meta-Inductive Node Classification across Graphs [6.0471030308057285]
We propose a novel meta-inductive framework called MI-GNN to customize the inductive model to each graph.
MI-GNN does not directly learn an inductive model; it learns the general knowledge of how to train a model for semi-supervised node classification on new graphs.
Extensive experiments on five real-world graph collections demonstrate the effectiveness of our proposed model.
arXiv Detail & Related papers (2021-05-14T09:16:28Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.