論文の概要: SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder
- arxiv url: http://arxiv.org/abs/2403.17502v1
- Date: Tue, 26 Mar 2024 09:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:06:48.693458
- Title: SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder
- Title(参考訳): SeNM-VAE:階層型変分オートエンコーダを用いた半教師付きノイズモデリング
- Authors: Dihan Zheng, Yihang Zou, Xiaowen Zhang, Chenglong Bao,
- Abstract要約: SeNM-VAEは、ペアとアンペアの両方のデータセットを利用して、現実的な劣化データを生成する半教師付きノイズモデリング手法である。
実世界の画像認識と超分解能タスクのためのペアトレーニングサンプルを生成するために,本手法を用いた。
提案手法は, 合成劣化画像の品質を, 他の不対とペアのノイズモデリング法と比較して向上させる。
- 参考スコア(独自算出の注目度): 13.453138169497903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The data bottleneck has emerged as a fundamental challenge in learning based image restoration methods. Researchers have attempted to generate synthesized training data using paired or unpaired samples to address this challenge. This study proposes SeNM-VAE, a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data. Our approach is based on modeling the conditional distribution of degraded and clean images with a specially designed graphical model. Under the variational inference framework, we develop an objective function for handling both paired and unpaired data. We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks. Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods. Furthermore, our approach demonstrates remarkable performance in downstream image restoration tasks, even with limited paired data. With more paired data, our method achieves the best performance on the SIDD dataset.
- Abstract(参考訳): データボトルネックは、学習に基づく画像復元法における根本的な課題として浮上している。
研究者たちは、この課題に対処するために、ペアまたはアンペアのサンプルを使用して合成されたトレーニングデータの生成を試みた。
本研究では、ペアとアンペアの両方のデータセットを利用して現実的な劣化データを生成するセミ教師付きノイズモデリング手法であるSeNM-VAEを提案する。
本手法は, 特別に設計されたグラフィカルモデルを用いて, 劣化画像とクリーン画像の条件分布をモデル化することに基づく。
変分推論フレームワークでは,ペアデータとアンペアデータの両方を扱う客観的関数を開発する。
実世界の画像認識と超分解能タスクのためのペアトレーニングサンプルを生成するために,本手法を用いた。
提案手法は, 合成劣化画像の品質を, 他の不対とペアのノイズモデリング法と比較して向上させる。
さらに,本手法は,限られたペアデータであっても,下流画像復元作業において顕著な性能を示す。
よりペア化されたデータにより、本手法はSIDDデータセット上で最高の性能を達成する。
関連論文リスト
- Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling [25.705179111920806]
この研究は、拡散モデルが高品質な表現を自己指導的に学習する上で優れている理由と時期に関する問題に対処する。
我々は低次元データモデルと後続推定に基づく数学的枠組みを開発し、画像生成の最終段階に近い生成と表現品質の基本的なトレードオフを明らかにする。
これらの知見に基づいて,ノイズレベルをまたいだ特徴を集約するアンサンブル法を提案し,ラベル雑音下でのクリーンな性能とロバスト性の両方を著しく改善する。
論文 参考訳(メタデータ) (2025-02-09T01:58:28Z) - Binary Diffusion Probabilistic Model [4.671529048076975]
本稿では,バイナリデータ表現に最適化された新しい生成モデルであるバイナリ拡散確率モデル(BDPM)を紹介する。
BDPMは、画像をビットプレーンに分解し、XORベースのノイズ変換を採用することでこの問題に対処する。
このアプローチは、正確なノイズ制御と計算効率の良い推論を可能にし、計算コストを大幅に削減し、モデル収束を改善する。
論文 参考訳(メタデータ) (2025-01-23T18:52:47Z) - Learned denoising with simulated and experimental low-dose CT data [8.689987421968116]
本研究は,CT画像における雑音低減の文脈における機械学習手法,特に畳み込みニューラルネットワーク(CNN)の適用について検討する。
シミュレーションノイズデータと実世界の実験ノイズデータで学習したアルゴリズムの観測性能の違いを総合的に調査するため,機械学習に大規模な2次元CTデータセットを用いた。
論文 参考訳(メタデータ) (2024-08-15T12:24:22Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
この制限を解除し、MDDトレーニングを改善する一連の技術であるMDD2を紹介する。
まず、回帰損失と高価なデータセット構築の必要性を排除します。
第2に, GAN損失を蒸留工程に統合し, 生成した試料と実画像との識別を行う。
論文 参考訳(メタデータ) (2024-05-23T17:59:49Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
大規模なデータセットでトレーニングされた拡散モデルは、顕著な品質と多様性のフォトリアリスティックなイメージを合成することができる。
i)拡散モデルの文脈でデータ属性の形式的概念を提供し、(ii)そのような属性を反実的に検証することを可能にする枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-11T08:39:43Z) - Improving Denoising Diffusion Probabilistic Models via Exploiting Shared
Representations [5.517338199249029]
SR-DDPMはノイズ拡散過程を逆転することで高品質な画像を生成する生成モデルのクラスである。
多様なデータ分布の類似性を利用して、画像の品質を損なうことなく、複数のタスクにスケールできる。
提案手法を標準画像データセット上で評価し、FIDとSSIMの指標で条件付きDDPMと条件付きDDPMの両方より優れていることを示す。
論文 参考訳(メタデータ) (2023-11-27T22:30:26Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Markup-to-Image Diffusion Models with Scheduled Sampling [111.30188533324954]
画像生成の最近の進歩に基づき,画像にマークアップを描画するためのデータ駆動型アプローチを提案する。
このアプローチは拡散モデルに基づいており、デノナイジング操作のシーケンスを用いてデータの分布をパラメータ化する。
数式(La)、テーブルレイアウト(HTML)、シート音楽(LilyPond)、分子画像(SMILES)の4つのマークアップデータセットの実験を行った。
論文 参考訳(メタデータ) (2022-10-11T04:56:12Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
本研究では,画像中の逆問題を容易に解けるような条件分布からデータをサンプリングする方法を提案する。
我々のモデルは、訓練のためにのみ等級画像を必要とするが、複雑な値のデータを再構成することができ、さらに並列画像まで拡張できる。
論文 参考訳(メタデータ) (2021-10-08T08:42:03Z) - DeFlow: Learning Complex Image Degradations from Unpaired Data with
Conditional Flows [145.83812019515818]
本論文では,不対データから画像劣化を学習するDeFlowを提案する。
共有フローデコーダネットワークの潜在空間における劣化過程をモデル化する。
共同画像復元と超解像におけるDeFlowの定式化を検証した。
論文 参考訳(メタデータ) (2021-01-14T18:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。