MapGuide: A Simple yet Effective Method to Reconstruct Continuous Language from Brain Activities
- URL: http://arxiv.org/abs/2403.17516v2
- Date: Tue, 2 Apr 2024 12:05:41 GMT
- Title: MapGuide: A Simple yet Effective Method to Reconstruct Continuous Language from Brain Activities
- Authors: Xinpei Zhao, Jingyuan Sun, Shaonan Wang, Jing Ye, Xiaohan Zhang, Chengqing Zong,
- Abstract summary: We propose a method that guides text reconstruction by comparing them with predicted text embeddings mapped from brain activities.
Our method significantly outperforms the current state-of-the-art model, showing average improvements of 77% and 54% on BLEU and METEOR scores.
Such insight can simplify the task of reconstructing language from brain activities for future work.
- Score: 28.498085040417813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding continuous language from brain activity is a formidable yet promising field of research. It is particularly significant for aiding people with speech disabilities to communicate through brain signals. This field addresses the complex task of mapping brain signals to text. The previous best attempt reverse-engineered this process in an indirect way: it began by learning to encode brain activity from text and then guided text generation by aligning with predicted brain responses. In contrast, we propose a simple yet effective method that guides text reconstruction by directly comparing them with the predicted text embeddings mapped from brain activities. Comprehensive experiments reveal that our method significantly outperforms the current state-of-the-art model, showing average improvements of 77% and 54% on BLEU and METEOR scores. We further validate the proposed modules through detailed ablation studies and case analyses and highlight a critical correlation: the more precisely we map brain activities to text embeddings, the better the text reconstruction results. Such insight can simplify the task of reconstructing language from brain activities for future work, emphasizing the importance of improving brain-to-text-embedding mapping techniques.
Related papers
- MindSemantix: Deciphering Brain Visual Experiences with a Brain-Language Model [45.18716166499859]
Deciphering the human visual experience through brain activities captured by fMRI represents a compelling and cutting-edge challenge.
We introduce MindSemantix, a novel multi-modal framework that enables LLMs to comprehend visually-evoked semantic content in brain activity.
MindSemantix generates high-quality captions that are deeply rooted in the visual and semantic information derived from brain activity.
arXiv Detail & Related papers (2024-05-29T06:55:03Z) - Language Reconstruction with Brain Predictive Coding from fMRI Data [28.217967547268216]
Theory of predictive coding suggests that human brain naturally engages in continuously predicting future word representations.
textscPredFT achieves current state-of-the-art decoding performance with a maximum BLEU-1 score of $27.8%$.
arXiv Detail & Related papers (2024-05-19T16:06:02Z) - Chat2Brain: A Method for Mapping Open-Ended Semantic Queries to Brain
Activation Maps [59.648646222905235]
We propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map semantic queries to brain activation maps.
We demonstrate that Chat2Brain can synthesize plausible neural activation patterns for more complex tasks of text queries.
arXiv Detail & Related papers (2023-09-10T13:06:45Z) - Probing Brain Context-Sensitivity with Masked-Attention Generation [87.31930367845125]
We use GPT-2 transformers to generate word embeddings that capture a fixed amount of contextual information.
We then tested whether these embeddings could predict fMRI brain activity in humans listening to naturalistic text.
arXiv Detail & Related papers (2023-05-23T09:36:21Z) - Neural Language Taskonomy: Which NLP Tasks are the most Predictive of
fMRI Brain Activity? [3.186888145772382]
Several popular Transformer based language models have been found to be successful for text-driven brain encoding.
In this work, we explore transfer learning from representations learned for ten popular natural language processing tasks.
Experiments across all 10 task representations provide the following cognitive insights.
arXiv Detail & Related papers (2022-05-03T10:23:08Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Long-range and hierarchical language predictions in brains and
algorithms [82.81964713263483]
We show that while deep language algorithms are optimized to predict adjacent words, the human brain would be tuned to make long-range and hierarchical predictions.
This study strengthens predictive coding theory and suggests a critical role of long-range and hierarchical predictions in natural language processing.
arXiv Detail & Related papers (2021-11-28T20:26:07Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Understanding Human Reading Comprehension with Brain Signals [37.850947109491685]
Little is known about what happens in human brain during reading comprehension.
With the advances in brain imaging techniques such as EEG, it is possible to collect high-precision brain signals in almost real time.
arXiv Detail & Related papers (2021-08-03T08:37:57Z) - Deep Recurrent Encoder: A scalable end-to-end network to model brain
signals [122.1055193683784]
We propose an end-to-end deep learning architecture trained to predict the brain responses of multiple subjects at once.
We successfully test this approach on a large cohort of magnetoencephalography (MEG) recordings acquired during a one-hour reading task.
arXiv Detail & Related papers (2021-03-03T11:39:17Z) - Brain2Word: Decoding Brain Activity for Language Generation [14.24200473508597]
We present a model that can decode fMRI data from unseen subjects.
Our model achieves 5.22% Top-1 and 13.59% Top-5 accuracy in this challenging task.
arXiv Detail & Related papers (2020-09-10T10:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.