LASIL: Learner-Aware Supervised Imitation Learning For Long-term Microscopic Traffic Simulation
- URL: http://arxiv.org/abs/2403.17601v3
- Date: Thu, 23 May 2024 07:41:01 GMT
- Title: LASIL: Learner-Aware Supervised Imitation Learning For Long-term Microscopic Traffic Simulation
- Authors: Ke Guo, Zhenwei Miao, Wei Jing, Weiwei Liu, Weizi Li, Dayang Hao, Jia Pan,
- Abstract summary: Microscopic traffic simulation plays a crucial role in transportation engineering by providing insights into individual vehicle behavior and overall traffic flow.
Traditional simulators relying on models often fail to deliver accurate simulations due to the complexity of real-world traffic environments.
In this paper, we propose a novel approach called learner-aware supervised imitation learning.
- Score: 30.500368103677097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microscopic traffic simulation plays a crucial role in transportation engineering by providing insights into individual vehicle behavior and overall traffic flow. However, creating a realistic simulator that accurately replicates human driving behaviors in various traffic conditions presents significant challenges. Traditional simulators relying on heuristic models often fail to deliver accurate simulations due to the complexity of real-world traffic environments. Due to the covariate shift issue, existing imitation learning-based simulators often fail to generate stable long-term simulations. In this paper, we propose a novel approach called learner-aware supervised imitation learning to address the covariate shift problem in multi-agent imitation learning. By leveraging a variational autoencoder simultaneously modeling the expert and learner state distribution, our approach augments expert states such that the augmented state is aware of learner state distribution. Our method, applied to urban traffic simulation, demonstrates significant improvements over existing state-of-the-art baselines in both short-term microscopic and long-term macroscopic realism when evaluated on the real-world dataset pNEUMA.
Related papers
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.
During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.
We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving [26.397030011439163]
We provide an overview of challenges with regard to different aspects and types of simulation.
We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation.
Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.
arXiv Detail & Related papers (2023-05-23T11:39:23Z) - Provable Sim-to-real Transfer in Continuous Domain with Partial
Observations [39.18274543757048]
Sim-to-real transfer trains RL agents in the simulated environments and then deploys them in the real world.
We show that a popular robust adversarial training algorithm is capable of learning a policy from the simulated environment that is competitive to the optimal policy in the real-world environment.
arXiv Detail & Related papers (2022-10-27T16:37:52Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
We present a novel framework ImInGAIL to address the problem of learning to simulate the driving behavior from sparse real-world data.
To the best of our knowledge, we are the first to tackle the data sparsity issue for behavior learning problems.
arXiv Detail & Related papers (2021-03-22T13:42:11Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.