UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection with Sparse LiDAR and Large Domain Gaps
- URL: http://arxiv.org/abs/2403.17633v4
- Date: Mon, 21 Oct 2024 11:34:27 GMT
- Title: UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection with Sparse LiDAR and Large Domain Gaps
- Authors: Maciej K Wozniak, Mattias Hansson, Marko Thiel, Patric Jensfelt,
- Abstract summary: We introduce Unsupervised Adversarial Domain Adaptation for 3D Object Detection (UADA3D)
We demonstrate its efficacy in various adaptation scenarios, showing significant improvements in both self-driving car and mobile robot domains.
Our code is open-source and will be available soon.
- Score: 2.79552147676281
- License:
- Abstract: In this study, we address a gap in existing unsupervised domain adaptation approaches on LiDAR-based 3D object detection, which have predominantly concentrated on adapting between established, high-density autonomous driving datasets. We focus on sparser point clouds, capturing scenarios from different perspectives: not just from vehicles on the road but also from mobile robots on sidewalks, which encounter significantly different environmental conditions and sensor configurations. We introduce Unsupervised Adversarial Domain Adaptation for 3D Object Detection (UADA3D). UADA3D does not depend on pre-trained source models or teacher-student architectures. Instead, it uses an adversarial approach to directly learn domain-invariant features. We demonstrate its efficacy in various adaptation scenarios, showing significant improvements in both self-driving car and mobile robot domains. Our code is open-source and will be available soon.
Related papers
- Detect Closer Surfaces that can be Seen: New Modeling and Evaluation in Cross-domain 3D Object Detection [7.464834150824093]
We propose two metrics to measure 3D object detection models' ability of detecting the closer surfaces to the sensor on the ego vehicle.
We also propose a refinement head, named EdgeHead, to guide models to focus more on the learnable closer surfaces.
arXiv Detail & Related papers (2024-07-04T17:06:16Z) - GPA-3D: Geometry-aware Prototype Alignment for Unsupervised Domain
Adaptive 3D Object Detection from Point Clouds [19.1949602403668]
Existing domain adaptive 3D detection methods do not adequately consider the problem of the distributional discrepancy in feature space.
In this work, we propose a novel unsupervised domain adaptive textbf3D detection framework, which explicitly leverages the intrinsic geometric relationship from point cloud objects to reduce the feature discrepancy.
The evaluation results obtained on various benchmarks, including nuScenes and KITTI, demonstrate the superiority of our GPA-3D over the state-of-the-art approaches for different adaptation scenarios.
arXiv Detail & Related papers (2023-08-16T04:15:21Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Train in Germany, Test in The USA: Making 3D Object Detectors Generalize [59.455225176042404]
deep learning has substantially improved the 3D object detection accuracy for LiDAR and stereo camera data alike.
Most datasets for autonomous driving are collected within a narrow subset of cities within one country.
In this paper we consider the task of adapting 3D object detectors from one dataset to another.
arXiv Detail & Related papers (2020-05-17T00:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.