Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection
- URL: http://arxiv.org/abs/2103.14198v1
- Date: Fri, 26 Mar 2021 01:18:11 GMT
- Title: Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection
- Authors: Yurong You, Carlos Andres Diaz-Ruiz, Yan Wang, Wei-Lun Chao, Bharath
Hariharan, Mark Campbell, Kilian Q Weinberger
- Abstract summary: State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
- Score: 55.12894776039135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-driving cars must detect other vehicles and pedestrians in 3D to plan
safe routes and avoid collisions. State-of-the-art 3D object detectors, based
on deep learning, have shown promising accuracy but are prone to over-fit to
domain idiosyncrasies, making them fail in new environments -- a serious
problem if autonomous vehicles are meant to operate freely. In this paper, we
propose a novel learning approach that drastically reduces this gap by
fine-tuning the detector on pseudo-labels in the target domain, which our
method generates while the vehicle is parked, based on replays of previously
recorded driving sequences. In these replays, objects are tracked over time,
and detections are interpolated and extrapolated -- crucially, leveraging
future information to catch hard cases. We show, on five autonomous driving
datasets, that fine-tuning the object detector on these pseudo-labels
substantially reduces the domain gap to new driving environments, yielding
drastic improvements in accuracy and detection reliability.
Related papers
- Learning 3D Perception from Others' Predictions [64.09115694891679]
We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector.
For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area.
arXiv Detail & Related papers (2024-10-03T16:31:28Z) - UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection with Sparse LiDAR and Large Domain Gaps [2.79552147676281]
We introduce Unsupervised Adversarial Domain Adaptation for 3D Object Detection (UADA3D)
We demonstrate its efficacy in various adaptation scenarios, showing significant improvements in both self-driving car and mobile robot domains.
Our code is open-source and will be available soon.
arXiv Detail & Related papers (2024-03-26T12:08:14Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
Small, far-away, or highly occluded objects are particularly challenging because there is limited information in the LiDAR point clouds for detecting them.
We propose a novel, end-to-end trainable Hindsight framework to extract contextual information from past data.
We show that this framework is compatible with most modern 3D detection architectures and can substantially improve their average precision on multiple autonomous driving datasets.
arXiv Detail & Related papers (2022-03-22T00:58:27Z) - Achieving Real-Time Object Detection on MobileDevices with Neural
Pruning Search [45.20331644857981]
We propose a compiler-aware neural pruning search framework to achieve high-speed inference on autonomous vehicles for 2D and 3D object detection.
For the first time, the proposed method achieves computation (close-to) real-time, 55ms and 99ms inference times for YOLOv4 based 2D object detection and PointPillars based 3D detection.
arXiv Detail & Related papers (2021-06-28T18:59:20Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.