Uncertainty-aware Distributional Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2403.17646v1
- Date: Tue, 26 Mar 2024 12:28:04 GMT
- Title: Uncertainty-aware Distributional Offline Reinforcement Learning
- Authors: Xiaocong Chen, Siyu Wang, Tong Yu, Lina Yao,
- Abstract summary: offline reinforcement learning (RL) presents distinct challenges as it relies solely on observational data.
We propose an uncertainty-aware distributional offline RL method to simultaneously address both uncertainty and environmentality.
Our method is rigorously evaluated through comprehensive experiments in both risk-sensitive and risk-neutral benchmarks, demonstrating its superior performance.
- Score: 26.34178581703107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning (RL) presents distinct challenges as it relies solely on observational data. A central concern in this context is ensuring the safety of the learned policy by quantifying uncertainties associated with various actions and environmental stochasticity. Traditional approaches primarily emphasize mitigating epistemic uncertainty by learning risk-averse policies, often overlooking environmental stochasticity. In this study, we propose an uncertainty-aware distributional offline RL method to simultaneously address both epistemic uncertainty and environmental stochasticity. We propose a model-free offline RL algorithm capable of learning risk-averse policies and characterizing the entire distribution of discounted cumulative rewards, as opposed to merely maximizing the expected value of accumulated discounted returns. Our method is rigorously evaluated through comprehensive experiments in both risk-sensitive and risk-neutral benchmarks, demonstrating its superior performance.
Related papers
- Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes.
Our work focuses on applying the entropic risk measure to RL problems.
We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint.
arXiv Detail & Related papers (2024-07-10T13:09:52Z) - Policy Gradient Methods for Risk-Sensitive Distributional Reinforcement Learning with Provable Convergence [15.720824593964027]
Risk-sensitive reinforcement learning (RL) is crucial for maintaining reliable performance in high-stakes applications.
This paper introduces a policy gradient method for risk-sensitive DRL with general coherent risk measures.
We also design a categorical distributional policy gradient algorithm (CDPG) based on categorical distributional policy evaluation and trajectory gradient estimation.
arXiv Detail & Related papers (2024-05-23T16:16:58Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Mind the Uncertainty: Risk-Aware and Actively Exploring Model-Based
Reinforcement Learning [26.497229327357935]
We introduce a simple but effective method for managing risk in model-based reinforcement learning with trajectory sampling.
Experiments indicate that the separation of uncertainties is essential to performing well with data-driven approaches in uncertain and safety-critical control environments.
arXiv Detail & Related papers (2023-09-11T16:10:58Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
We propose risk-sensitivity as a mechanism to jointly address both of these issues.
Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environmentity.
Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks.
arXiv Detail & Related papers (2022-11-30T21:24:11Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z) - Expert-Supervised Reinforcement Learning for Offline Policy Learning and
Evaluation [21.703965401500913]
We propose an Expert-Supervised RL (ESRL) framework which uses uncertainty quantification for offline policy learning.
In particular, we have three contributions: 1) the method can learn safe and optimal policies through hypothesis testing, 2) ESRL allows for different levels of risk averse implementations tailored to the application context, and 3) we propose a way to interpret ESRL's policy at every state through posterior distributions.
arXiv Detail & Related papers (2020-06-23T17:43:44Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.