Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning
- URL: http://arxiv.org/abs/2501.02087v1
- Date: Fri, 03 Jan 2025 20:25:41 GMT
- Title: Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning
- Authors: Mehrdad Moghimi, Hyejin Ku,
- Abstract summary: In domains such as finance, healthcare, and robotics, managing worst-case scenarios is critical.
Distributional Reinforcement Learning (DRL) provides a natural framework to incorporate risk sensitivity into decision-making processes.
We present a novel DRL algorithm with convergence guarantees that optimize for a broader class of static Spectral Risk Measures (SRM)
- Score: 4.8342038441006805
- License:
- Abstract: In domains such as finance, healthcare, and robotics, managing worst-case scenarios is critical, as failure to do so can lead to catastrophic outcomes. Distributional Reinforcement Learning (DRL) provides a natural framework to incorporate risk sensitivity into decision-making processes. However, existing approaches face two key limitations: (1) the use of fixed risk measures at each decision step often results in overly conservative policies, and (2) the interpretation and theoretical properties of the learned policies remain unclear. While optimizing a static risk measure addresses these issues, its use in the DRL framework has been limited to the simple static CVaR risk measure. In this paper, we present a novel DRL algorithm with convergence guarantees that optimizes for a broader class of static Spectral Risk Measures (SRM). Additionally, we provide a clear interpretation of the learned policy by leveraging the distribution of returns in DRL and the decomposition of static coherent risk measures. Extensive experiments demonstrate that our model learns policies aligned with the SRM objective, and outperforms existing risk-neutral and risk-sensitive DRL models in various settings.
Related papers
- Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes.
Our work focuses on applying the entropic risk measure to RL problems.
We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint.
arXiv Detail & Related papers (2024-07-10T13:09:52Z) - Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk [23.63388546004777]
We analyze the robustness of CVaR-based risk-sensitive RL under Robust Markov Decision Processes.
Motivated by the existence of decision-dependent uncertainty in real-world problems, we study problems with state-action-dependent ambiguity sets.
arXiv Detail & Related papers (2024-05-02T20:28:49Z) - Risk-Sensitive RL with Optimized Certainty Equivalents via Reduction to
Standard RL [48.1726560631463]
We study Risk-Sensitive Reinforcement Learning with the Optimized Certainty Equivalent (OCE) risk.
We propose two general meta-algorithms via reductions to standard RL.
We show that it learns the optimal risk-sensitive policy while prior algorithms provably fail.
arXiv Detail & Related papers (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Is Risk-Sensitive Reinforcement Learning Properly Resolved? [32.42976780682353]
We propose a novel algorithm, namely Trajectory Q-Learning (TQL), for RSRL problems with provable convergence to the optimal policy.
Based on our new learning architecture, we are free to introduce a general and practical implementation for different risk measures to learn disparate risk-sensitive policies.
arXiv Detail & Related papers (2023-07-02T11:47:21Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
We propose risk-sensitivity as a mechanism to jointly address both of these issues.
Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environmentity.
Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks.
arXiv Detail & Related papers (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.