ExpressEdit: Video Editing with Natural Language and Sketching
- URL: http://arxiv.org/abs/2403.17693v1
- Date: Tue, 26 Mar 2024 13:34:21 GMT
- Title: ExpressEdit: Video Editing with Natural Language and Sketching
- Authors: Bekzat Tilekbay, Saelyne Yang, Michal Lewkowicz, Alex Suryapranata, Juho Kim,
- Abstract summary: multimodality$-$natural language (NL) and sketching are natural modalities humans use for expression$-$can be utilized to support video editors.
We present ExpressEdit, a system that enables editing videos via NL text and sketching on the video frame.
- Score: 28.814923641627825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Informational videos serve as a crucial source for explaining conceptual and procedural knowledge to novices and experts alike. When producing informational videos, editors edit videos by overlaying text/images or trimming footage to enhance the video quality and make it more engaging. However, video editing can be difficult and time-consuming, especially for novice video editors who often struggle with expressing and implementing their editing ideas. To address this challenge, we first explored how multimodality$-$natural language (NL) and sketching, which are natural modalities humans use for expression$-$can be utilized to support video editors in expressing video editing ideas. We gathered 176 multimodal expressions of editing commands from 10 video editors, which revealed the patterns of use of NL and sketching in describing edit intents. Based on the findings, we present ExpressEdit, a system that enables editing videos via NL text and sketching on the video frame. Powered by LLM and vision models, the system interprets (1) temporal, (2) spatial, and (3) operational references in an NL command and spatial references from sketching. The system implements the interpreted edits, which then the user can iterate on. An observational study (N=10) showed that ExpressEdit enhanced the ability of novice video editors to express and implement their edit ideas. The system allowed participants to perform edits more efficiently and generate more ideas by generating edits based on user's multimodal edit commands and supporting iterations on the editing commands. This work offers insights into the design of future multimodal interfaces and AI-based pipelines for video editing.
Related papers
- A Reinforcement Learning-Based Automatic Video Editing Method Using Pre-trained Vision-Language Model [10.736207095604414]
We propose a two-stage scheme for general editing. Firstly, unlike previous works that extract scene-specific features, we leverage the pre-trained Vision-Language Model (VLM)
We also propose a Reinforcement Learning (RL)-based editing framework to formulate the editing problem and train the virtual editor to make better sequential editing decisions.
arXiv Detail & Related papers (2024-11-07T18:20:28Z) - Videoshop: Localized Semantic Video Editing with Noise-Extrapolated Diffusion Inversion [19.969947635371]
Videoshop is a training-free video editing algorithm for localized semantic edits.
It allows users to add or remove objects, semantically change objects, insert stock photos into videos, etc. with fine-grained control over locations and appearance.
Videoshop produces higher quality edits against 6 baselines on 2 editing benchmarks using 10 evaluation metrics.
arXiv Detail & Related papers (2024-03-21T17:59:03Z) - Action Reimagined: Text-to-Pose Video Editing for Dynamic Human Actions [49.14827857853878]
ReimaginedAct comprises video understanding, reasoning, and editing modules.
Our method can accept not only direct instructional text prompts but also what if' questions to predict possible action changes.
arXiv Detail & Related papers (2024-03-11T22:46:46Z) - UniEdit: A Unified Tuning-Free Framework for Video Motion and Appearance Editing [28.140945021777878]
We present UniEdit, a tuning-free framework that supports both video motion and appearance editing.
To realize motion editing while preserving source video content, we introduce auxiliary motion-reference and reconstruction branches.
The obtained features are then injected into the main editing path via temporal and spatial self-attention layers.
arXiv Detail & Related papers (2024-02-20T17:52:12Z) - Neural Video Fields Editing [56.558490998753456]
NVEdit is a text-driven video editing framework designed to mitigate memory overhead and improve consistency.
We construct a neural video field, powered by tri-plane and sparse grid, to enable encoding long videos with hundreds of frames.
Next, we update the video field through off-the-shelf Text-to-Image (T2I) models to text-driven editing effects.
arXiv Detail & Related papers (2023-12-12T14:48:48Z) - MagicEdit: High-Fidelity and Temporally Coherent Video Editing [70.55750617502696]
We present MagicEdit, a surprisingly simple yet effective solution to the text-guided video editing task.
We found that high-fidelity and temporally coherent video-to-video translation can be achieved by explicitly disentangling the learning of content, structure and motion signals during training.
arXiv Detail & Related papers (2023-08-28T17:56:22Z) - INVE: Interactive Neural Video Editing [79.48055669064229]
Interactive Neural Video Editing (INVE) is a real-time video editing solution that consistently propagates sparse frame edits to the entire video clip.
Our method is inspired by the recent work on Layered Neural Atlas (LNA)
LNA suffers from two major drawbacks: (1) the method is too slow for interactive editing, and (2) it offers insufficient support for some editing use cases.
arXiv Detail & Related papers (2023-07-15T00:02:41Z) - Make-A-Protagonist: Generic Video Editing with An Ensemble of Experts [116.05656635044357]
We propose a generic video editing framework called Make-A-Protagonist.
Specifically, we leverage multiple experts to parse source video, target visual and textual clues, and propose a visual-textual-based video generation model.
Results demonstrate the versatile and remarkable editing capabilities of Make-A-Protagonist.
arXiv Detail & Related papers (2023-05-15T17:59:03Z) - The Anatomy of Video Editing: A Dataset and Benchmark Suite for
AI-Assisted Video Editing [90.59584961661345]
This work introduces the Anatomy of Video Editing, a dataset, and benchmark, to foster research in AI-assisted video editing.
Our benchmark suite focuses on video editing tasks, beyond visual effects, such as automatic footage organization and assisted video assembling.
To enable research on these fronts, we annotate more than 1.5M tags, with relevant concepts to cinematography, from 196176 shots sampled from movie scenes.
arXiv Detail & Related papers (2022-07-20T10:53:48Z) - Intelligent Video Editing: Incorporating Modern Talking Face Generation
Algorithms in a Video Editor [44.36920938661454]
This paper proposes a video editor based on OpenShot with several state-of-the-art facial video editing algorithms as added functionalities.
Our editor provides an easy-to-use interface to apply modern lip-syncing algorithms interactively.
Our evaluations show a clear improvement in the efficiency of using human editors and an improved video generation quality.
arXiv Detail & Related papers (2021-10-16T14:19:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.