PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition
- URL: http://arxiv.org/abs/2403.17695v2
- Date: Thu, 15 Aug 2024 14:30:02 GMT
- Title: PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition
- Authors: Chenhongyi Yang, Zehui Chen, Miguel Espinosa, Linus Ericsson, Zhenyu Wang, Jiaming Liu, Elliot J. Crowley,
- Abstract summary: PlainMamba is a simple non-hierarchical state space model (SSM) designed for general visual recognition.
We adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images.
Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks.
- Score: 21.761988930589727
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present PlainMamba: a simple non-hierarchical state space model (SSM) designed for general visual recognition. The recent Mamba model has shown how SSMs can be highly competitive with other architectures on sequential data and initial attempts have been made to apply it to images. In this paper, we further adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images by (i) a continuous 2D scanning process that improves spatial continuity by ensuring adjacency of tokens in the scanning sequence, and (ii) direction-aware updating which enables the model to discern the spatial relations of tokens by encoding directional information. Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks, resulting in a model with constant width throughout all layers. The architecture is further simplified by removing the need for special tokens. We evaluate PlainMamba on a variety of visual recognition tasks, achieving performance gains over previous non-hierarchical models and is competitive with hierarchical alternatives. For tasks requiring high-resolution inputs, in particular, PlainMamba requires much less computing while maintaining high performance. Code and models are available at: https://github.com/ChenhongyiYang/PlainMamba .
Related papers
- Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion [46.82975707531064]
Selective state space models (SSMs) excel at capturing long-range dependencies in 1D sequential data.
We propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space.
We show that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation.
arXiv Detail & Related papers (2024-10-19T12:56:58Z) - V2M: Visual 2-Dimensional Mamba for Image Representation Learning [68.51380287151927]
Mamba has garnered widespread attention due to its flexible design and efficient hardware performance to process 1D sequences.
Recent studies have attempted to apply Mamba to the visual domain by flattening 2D images into patches and then regarding them as a 1D sequence.
We propose a Visual 2-Dimensional Mamba model as a complete solution, which directly processes image tokens in the 2D space.
arXiv Detail & Related papers (2024-10-14T11:11:06Z) - QuadMamba: Learning Quadtree-based Selective Scan for Visual State Space Model [16.01259690063522]
New vision Mamba model, coined QuadMamba, captures local dependencies of varying granularities via quadtree-based image partition and scan.
QuadMamba achieves state-of-the-art performance in various vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation.
arXiv Detail & Related papers (2024-10-09T12:03:50Z) - Distillation-free Scaling of Large SSMs for Images and Videos [27.604572990625144]
State-space models (SSMs) have introduced a novel context modeling method by integrating state-space techniques into deep learning.
Mamba-based architectures are difficult to scale with respect to the number of parameters, which is a major limitation for vision applications.
We propose a Mamba-Attention interleaved architecture that enhances scalability, robustness, and performance.
arXiv Detail & Related papers (2024-09-18T10:48:10Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - LocalMamba: Visual State Space Model with Windowed Selective Scan [45.00004931200446]
Key to enhancing Vision Mamba (ViM) lies in optimizing scan directions for sequence modeling.
We introduce a novel local scanning strategy that divides images into distinct windows, effectively capturing local dependencies.
Our model significantly outperforms Vim-Ti by 3.1% on ImageNet with the same 1.5G FLOPs.
arXiv Detail & Related papers (2024-03-14T12:32:40Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - VMamba: Visual State Space Model [92.83984290020891]
VMamba is a vision backbone that works in linear time complexity.
At the core of VMamba lies a stack of Visual State-Space (VSS) blocks with the 2D Selective Scan (SS2D) module.
arXiv Detail & Related papers (2024-01-18T17:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.