Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion
- URL: http://arxiv.org/abs/2410.15091v1
- Date: Sat, 19 Oct 2024 12:56:58 GMT
- Title: Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion
- Authors: Chaodong Xiao, Minghan Li, Zhengqiang Zhang, Deyu Meng, Lei Zhang,
- Abstract summary: Selective state space models (SSMs) excel at capturing long-range dependencies in 1D sequential data.
We propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space.
We show that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation.
- Score: 46.82975707531064
- License:
- Abstract: Selective state space models (SSMs), such as Mamba, highly excel at capturing long-range dependencies in 1D sequential data, while their applications to 2D vision tasks still face challenges. Current visual SSMs often convert images into 1D sequences and employ various scanning patterns to incorporate local spatial dependencies. However, these methods are limited in effectively capturing the complex image spatial structures and the increased computational cost caused by the lengthened scanning paths. To address these limitations, we propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space. Instead of relying solely on sequential state transitions, we introduce a structure-aware state fusion equation, which leverages dilated convolutions to capture image spatial structural dependencies, significantly enhancing the flow of visual contextual information. Spatial-Mamba proceeds in three stages: initial state computation in a unidirectional scan, spatial context acquisition through structure-aware state fusion, and final state computation using the observation equation. Our theoretical analysis shows that Spatial-Mamba unifies the original Mamba and linear attention under the same matrix multiplication framework, providing a deeper understanding of our method. Experimental results demonstrate that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation. Source codes and trained models can be found at $\href{https://github.com/EdwardChasel/Spatial-Mamba}{\text{this https URL}}$.
Related papers
- SEM-Net: Efficient Pixel Modelling for image inpainting with Spatially Enhanced SSM [11.447968918063335]
Image inpainting aims to repair a partially damaged image based on the information from known regions of the images.
SEM-Net is a novel visual State Space model (SSM) vision network, modelling corrupted images at the pixel level while capturing long-range dependencies (LRDs) in state space.
arXiv Detail & Related papers (2024-11-10T00:35:14Z) - V2M: Visual 2-Dimensional Mamba for Image Representation Learning [68.51380287151927]
Mamba has garnered widespread attention due to its flexible design and efficient hardware performance to process 1D sequences.
Recent studies have attempted to apply Mamba to the visual domain by flattening 2D images into patches and then regarding them as a 1D sequence.
We propose a Visual 2-Dimensional Mamba model as a complete solution, which directly processes image tokens in the 2D space.
arXiv Detail & Related papers (2024-10-14T11:11:06Z) - Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement [51.557804095896174]
We introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting.
Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - SSUMamba: Spatial-Spectral Selective State Space Model for Hyperspectral Image Denoising [13.1240990099267]
We introduce a memory-efficient spatial-spectralamba (SSUMamba) for HSI denoising.
Mamba is known for its remarkable long-range dependency modeling capabilities.
SSUMamba achieves superior denoising results with lower memory consumption per batch compared to transformer-based methods.
arXiv Detail & Related papers (2024-05-02T20:44:26Z) - S$^2$Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification [44.99672241508994]
Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information.
We propose S$2$Mamba, a spatial-spectral state space model for hyperspectral image classification, to excavate spatial-spectral contextual features.
arXiv Detail & Related papers (2024-04-28T15:12:56Z) - PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition [21.761988930589727]
PlainMamba is a simple non-hierarchical state space model (SSM) designed for general visual recognition.
We adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images.
Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks.
arXiv Detail & Related papers (2024-03-26T13:35:10Z) - VMamba: Visual State Space Model [92.83984290020891]
VMamba is a vision backbone that works in linear time complexity.
At the core of VMamba lies a stack of Visual State-Space (VSS) blocks with the 2D Selective Scan (SS2D) module.
arXiv Detail & Related papers (2024-01-18T17:55:39Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.