論文の概要: Out-of-distribution Rumor Detection via Test-Time Adaptation
- arxiv url: http://arxiv.org/abs/2403.17735v1
- Date: Tue, 26 Mar 2024 14:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 15:08:05.660501
- Title: Out-of-distribution Rumor Detection via Test-Time Adaptation
- Title(参考訳): テスト時間適応による分布外騒音検出
- Authors: Xiang Tao, Mingqing Zhang, Qiang Liu, Shu Wu, Liang Wang,
- Abstract要約: 分布シフト(TARD)による騒音検出のための簡易かつ効率的なテスト時間適応法を提案する。
本手法は,伝搬グラフの形式でニュースの伝搬をモデル化し,伝搬グラフのテスト時間適応フレームワークを構築する。
実世界のソーシャルプラットフォームから収集した2つのグループデータセットを用いて行った実験は、我々のフレームワークがパフォーマンスにおいて最先端の手法よりも優れていることを示した。
- 参考スコア(独自算出の注目度): 21.342632695285364
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the rapid spread of rumors on social media, rumor detection has become an extremely important challenge. Existing methods for rumor detection have achieved good performance, as they have collected enough corpus from the same data distribution for model training. However, significant distribution shifts between the training data and real-world test data occur due to differences in news topics, social media platforms, languages and the variance in propagation scale caused by news popularity. This leads to a substantial decline in the performance of these existing methods in Out-Of-Distribution (OOD) situations. To address this problem, we propose a simple and efficient method named Test-time Adaptation for Rumor Detection under distribution shifts (TARD). This method models the propagation of news in the form of a propagation graph, and builds propagation graph test-time adaptation framework, enhancing the model's adaptability and robustness when facing OOD problems. Extensive experiments conducted on two group datasets collected from real-world social platforms demonstrate that our framework outperforms the state-of-the-art methods in performance.
- Abstract(参考訳): ソーシャルメディア上の噂が急速に広まる中、噂検出は極めて重要な課題となっている。
既存のうわさ検出手法は,同じデータ分布から十分なコーパスを収集し,モデル学習に有効である。
しかし、ニューストピック、ソーシャルメディアプラットフォーム、言語、ニュース人気による伝播スケールのばらつきなどにより、トレーニングデータと実世界のテストデータの間に大きな分布変化が生じている。
これにより、既存のOf-Distribution(OOD)状況におけるこれらのメソッドのパフォーマンスが大幅に低下する。
そこで本研究では,分散シフト(TARD)下での騒音検出のための簡易かつ効率的なテスト時間適応法を提案する。
本手法は,伝搬グラフの形式でニュースの伝搬をモデル化し,伝搬グラフのテスト時間適応フレームワークを構築し,OOD問題に直面する際のモデルの適応性と堅牢性を高める。
実世界のソーシャルプラットフォームから収集した2つのグループデータセットに対して行われた大規模な実験により、我々のフレームワークはパフォーマンスにおいて最先端の手法よりも優れていることが示された。
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - Less is More: Unseen Domain Fake News Detection via Causal Propagation Substructures [13.80520305397377]
本稿では,Causal Subgraph-oriented Domain Adaptive Fake News Detectionモデルを提案する。
伝播グラフから因果部分構造を抽出することにより、ゼロショットフェイクニュースの検出を強化するように設計されている。
他の最先端モデルに比べて7~16パーセントの精度向上を実現している。
論文 参考訳(メタデータ) (2024-11-14T12:05:35Z) - Comprehensive OOD Detection Improvements [46.46252643210326]
このタスクのために、アウト・オブ・ディストリビューション(OOD)検出手法が作成されている。
我々は,時間的高速化と性能向上の両面において,特徴埋め込みの次元的削減を表現ベース手法に適用する。
提案手法の有効性を,OpenOODv1.5ベンチマークフレームワーク上で実証する。
論文 参考訳(メタデータ) (2024-01-18T18:05:35Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - A Unified Contrastive Transfer Framework with Propagation Structure for
Boosting Low-Resource Rumor Detection [11.201348902221257]
既存の噂検出アルゴリズムは 昨日のニュースで 有望な性能を見せています
十分なトレーニングデータや事前の専門家知識が欠如しているため、予期せぬ出来事に関する噂を見つけるのが苦手である。
本稿では,十分な情報源から得られた特徴を,少数のアノテーションで少ない資料に適応させることで,噂を検出するための一貫したコントラスト転送フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-04T03:13:03Z) - Learning to Adapt to Online Streams with Distribution Shifts [22.155844301575883]
テスト時間適応(TTA)は、推論中にラベルのないテストデータを活用することにより、トレーニングセットとテストセットの間の分散ギャップを低減する手法である。
この作業では、TTAをより実践的なシナリオに拡張し、テストデータは、時間とともに分散の変化を経験するオンラインストリームの形式で提供される。
本稿では,メタトレーニング中にネットワークに分散シフトするオンラインストリームに適応するように教えるメタラーニング手法を提案する。その結果,トレーニングされたモデルはバッチサイズ制限にかかわらず,テスト中の分散シフトに連続的に適応することができる。
論文 参考訳(メタデータ) (2023-03-02T23:36:10Z) - Boosting Out-of-Distribution Detection with Multiple Pre-trained Models [41.66566916581451]
事前訓練されたモデルを用いたポストホック検出は有望な性能を示し、大規模にスケールできる。
本稿では,事前訓練されたモデルの動物園から抽出した複数の検出決定をアンサンブルすることで,検出強化手法を提案する。
CIFAR10 と ImageNet のベンチマークでは, 相対性能を 65.40% と 26.96% で大幅に改善した。
論文 参考訳(メタデータ) (2022-12-24T12:11:38Z) - Certifying Model Accuracy under Distribution Shifts [151.67113334248464]
本稿では,データ分布の有界ワッサースタインシフトの下でのモデルの精度について,証明可能なロバスト性保証を提案する。
変換空間におけるモデルの入力をランダム化する単純な手順は、変換の下での分布シフトに対して確実に堅牢であることを示す。
論文 参考訳(メタデータ) (2022-01-28T22:03:50Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
既存のモデルはクリーンデータに基づいてトレーニングされ、クリーンデータトレーニングと現実世界の推論の間にtextitgapが発生する。
本稿では,良質なサンプルと低品質のサンプルの両方が類似ベクトル空間に埋め込まれた領域適応法を提案する。
広く使用されているデータセット、スニップス、および大規模な社内データセット(1000万のトレーニング例)に関する実験では、この方法は実世界の(騒々しい)コーパスのベースラインモデルを上回るだけでなく、堅牢性、すなわち、騒々しい環境下で高品質の結果を生み出すことを実証しています。
論文 参考訳(メタデータ) (2021-04-13T17:54:33Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
トレーニングセットとテストセット間の音響音声の統計的分布のミスマッチにより,音声言語識別(SLID)の性能が大幅に低下する可能性がある。
SLIDの分布ミスマッチ問題に対処するために,教師なしニューラル適応モデルを提案する。
論文 参考訳(メタデータ) (2020-12-24T07:37:19Z) - WILDS: A Benchmark of in-the-Wild Distribution Shifts [157.53410583509924]
分散シフトは、ワイルドにデプロイされた機械学習システムの精度を実質的に低下させることができる。
分散シフトの多様な範囲を反映した8つのベンチマークデータセットのキュレーションコレクションであるWILDSを紹介します。
本研究は, 標準訓練の結果, 分布性能よりも, 分布域外性能が有意に低下することを示す。
論文 参考訳(メタデータ) (2020-12-14T11:14:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。