CT Synthesis with Conditional Diffusion Models for Abdominal Lymph Node Segmentation
- URL: http://arxiv.org/abs/2403.17770v1
- Date: Tue, 26 Mar 2024 14:59:11 GMT
- Title: CT Synthesis with Conditional Diffusion Models for Abdominal Lymph Node Segmentation
- Authors: Yongrui Yu, Hanyu Chen, Zitian Zhang, Qiong Xiao, Wenhui Lei, Linrui Dai, Yu Fu, Hui Tan, Guan Wang, Peng Gao, Xiaofan Zhang,
- Abstract summary: We present a pipeline that integrates the conditional diffusion model for lymph node generation and the nnU-Net model for lymph node segmentation.
LN-DDPM utilizes lymph node masks and anatomical structure masks as model conditions.
Experimental results on the abdominal lymph node datasets demonstrate that LN-DDPM outperforms other generative methods in the abdominal lymph node image synthesis and better assists the downstream abdominal lymph node segmentation task.
- Score: 12.226538753367965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the significant success achieved by deep learning methods in medical image segmentation, researchers still struggle in the computer-aided diagnosis of abdominal lymph nodes due to the complex abdominal environment, small and indistinguishable lesions, and limited annotated data. To address these problems, we present a pipeline that integrates the conditional diffusion model for lymph node generation and the nnU-Net model for lymph node segmentation to improve the segmentation performance of abdominal lymph nodes through synthesizing a diversity of realistic abdominal lymph node data. We propose LN-DDPM, a conditional denoising diffusion probabilistic model (DDPM) for lymph node (LN) generation. LN-DDPM utilizes lymph node masks and anatomical structure masks as model conditions. These conditions work in two conditioning mechanisms: global structure conditioning and local detail conditioning, to distinguish between lymph nodes and their surroundings and better capture lymph node characteristics. The obtained paired abdominal lymph node images and masks are used for the downstream segmentation task. Experimental results on the abdominal lymph node datasets demonstrate that LN-DDPM outperforms other generative methods in the abdominal lymph node image synthesis and better assists the downstream abdominal lymph node segmentation task.
Related papers
- SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images [38.69240497671607]
We propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes.
SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes.
arXiv Detail & Related papers (2024-09-10T08:27:44Z) - LN-Gen: Rectal Lymph Nodes Generation via Anatomical Features [8.428364324501048]
The complexity of the surrounding anatomical structures and the scarcity of annotated data pose significant challenges.
This study introduces a novel lymph node synthesis technique aimed at generating diverse and realistic synthetic rectal lymph node samples.
arXiv Detail & Related papers (2024-08-27T11:40:23Z) - Weakly Supervised Lymph Nodes Segmentation Based on Partial Instance Annotations with Pre-trained Dual-branch Network and Pseudo Label Learning [6.722923391378295]
We propose a pre-trained Dual-Branch network with Dynamically Mixed Pseudo label (DBDMP) to learn from partial instance annotations for lymph nodes segmentation.
Our method significantly improves the Dice Similarity Coefficient (DSC) from 11.04% to 54.10% and reduces the Average Symmetric Surface Distance (ASSD) from 20.83 $mm$ to 8.72 $mm$.
arXiv Detail & Related papers (2024-08-18T08:54:53Z) - Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge [2.1994532511228773]
The MICCAI 2023 Lymph Node Quantification Challenge published the first public dataset for pathological lymph node segmentation in the mediastinum.
As lymph node annotations are expensive, the challenge was formed as a weakly supervised learning task, where only a subset of all lymph nodes in the training set have been annotated.
For the challenge submission, multiple methods for training on these weakly supervised data were explored, including noisy label training, loss masking of unlabeled data, and an approach that integrated the TotalSegmentator toolbox as a form of pseudo labeling.
Our submitted model achieved a Dice score of 0.628 and an average symmetric surface distance of
arXiv Detail & Related papers (2024-06-20T14:38:33Z) - LNQ Challenge 2023: Learning Mediastinal Lymph Node Segmentation with a Probabilistic Lymph Node Atlas [0.010416625072338245]
The evaluation of lymph node metastases plays a crucial role in achieving precise cancer staging.
Lymph node detection poses challenges due to the presence of unclear boundaries and the diverse range of sizes and morphological characteristics.
As part of the LNQ 2023 MICCAI challenge, we propose the use of anatomical priors as a tool to address the challenges.
arXiv Detail & Related papers (2024-06-06T11:57:25Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.