SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
- URL: http://arxiv.org/abs/2409.06324v1
- Date: Tue, 10 Sep 2024 08:27:44 GMT
- Title: SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
- Authors: Jiuli Xiong, Lanzhuju Mei, Jiameng Liu, Dinggang Shen, Zhong Xue, Xiaohuan Cao,
- Abstract summary: We propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes.
SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes.
- Score: 38.69240497671607
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.
Related papers
- Weakly Supervised Lymph Nodes Segmentation Based on Partial Instance Annotations with Pre-trained Dual-branch Network and Pseudo Label Learning [6.722923391378295]
We propose a pre-trained Dual-Branch network with Dynamically Mixed Pseudo label (DBDMP) to learn from partial instance annotations for lymph nodes segmentation.
Our method significantly improves the Dice Similarity Coefficient (DSC) from 11.04% to 54.10% and reduces the Average Symmetric Surface Distance (ASSD) from 20.83 $mm$ to 8.72 $mm$.
arXiv Detail & Related papers (2024-08-18T08:54:53Z) - LNQ Challenge 2023: Learning Mediastinal Lymph Node Segmentation with a Probabilistic Lymph Node Atlas [0.010416625072338245]
The evaluation of lymph node metastases plays a crucial role in achieving precise cancer staging.
Lymph node detection poses challenges due to the presence of unclear boundaries and the diverse range of sizes and morphological characteristics.
As part of the LNQ 2023 MICCAI challenge, we propose the use of anatomical priors as a tool to address the challenges.
arXiv Detail & Related papers (2024-06-06T11:57:25Z) - CT Synthesis with Conditional Diffusion Models for Abdominal Lymph Node Segmentation [12.226538753367965]
We present a pipeline that integrates the conditional diffusion model for lymph node generation and the nnU-Net model for lymph node segmentation.
LN-DDPM utilizes lymph node masks and anatomical structure masks as model conditions.
Experimental results on the abdominal lymph node datasets demonstrate that LN-DDPM outperforms other generative methods in the abdominal lymph node image synthesis and better assists the downstream abdominal lymph node segmentation task.
arXiv Detail & Related papers (2024-03-26T14:59:11Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - A Weakly Supervised Segmentation Network Embedding Cross-scale Attention
Guidance and Noise-sensitive Constraint for Detecting Tertiary Lymphoid
Structures of Pancreatic Tumors [19.775101438245272]
The presence of tertiary lymphoid structures (TLSs) on pancreatic pathological images is an important prognostic indicator of pancreatic tumors.
We propose a weakly supervised segmentation network to detect the TLSs in a manner of few-shot learning.
Experimental results on two collected datasets demonstrate that our proposed method significantly outperforms the state-of-the-art segmentation-based algorithms in terms of TLSs detection accuracy.
arXiv Detail & Related papers (2023-07-27T03:25:09Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Mediastinal lymph nodes segmentation using 3D convolutional neural
network ensembles and anatomical priors guiding [0.0]
The presence of enlarged and potentially malignant lymph nodes must be assessed to properly estimate disease progression and select the best treatment strategy.
The use of 3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled entire volumes, is investigated.
For the 1178 lymph nodes with a short-axis diameter $geq10$ mm, our best performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5, and a segmentation overlap of 80.5%.
arXiv Detail & Related papers (2021-02-11T14:51:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.