論文の概要: Have Faith in Faithfulness: Going Beyond Circuit Overlap When Finding Model Mechanisms
- arxiv url: http://arxiv.org/abs/2403.17806v2
- Date: Mon, 15 Jul 2024 12:07:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 01:15:36.278046
- Title: Have Faith in Faithfulness: Going Beyond Circuit Overlap When Finding Model Mechanisms
- Title(参考訳): 信仰の信条:モデルメカニズムを見つけるときの回路オーバーラップを超えて行く
- Authors: Michael Hanna, Sandro Pezzelle, Yonatan Belinkov,
- Abstract要約: エッジ属性パッチ(EAP: Edge Attribution patching)は、介入に対する勾配に基づく近似であり、この問題に対するスケーラブルだが不完全な解決策として現れている。
本稿では,回路のコア特性をよりよく維持することを目的とした,統合勾配付きEAP(EAP-IG)手法を提案する。
EAPを用いた回路はEAP-IGを用いた回路に比べて信頼性が低いことを示した。
- 参考スコア(独自算出の注目度): 35.514624827207136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recent language model (LM) interpretability studies have adopted the circuits framework, which aims to find the minimal computational subgraph, or circuit, that explains LM behavior on a given task. Most studies determine which edges belong in a LM's circuit by performing causal interventions on each edge independently, but this scales poorly with model size. Edge attribution patching (EAP), gradient-based approximation to interventions, has emerged as a scalable but imperfect solution to this problem. In this paper, we introduce a new method - EAP with integrated gradients (EAP-IG) - that aims to better maintain a core property of circuits: faithfulness. A circuit is faithful if all model edges outside the circuit can be ablated without changing the model's performance on the task; faithfulness is what justifies studying circuits, rather than the full model. Our experiments demonstrate that circuits found using EAP are less faithful than those found using EAP-IG, even though both have high node overlap with circuits found previously using causal interventions. We conclude more generally that when using circuits to compare the mechanisms models use to solve tasks, faithfulness, not overlap, is what should be measured.
- Abstract(参考訳): 近年の言語モデル (LM) の解釈可能性に関する多くの研究は、与えられたタスク上でのLMの振る舞いを説明する最小限の計算部分グラフ(英語版)または回路を見つけることを目的とした回路フレームワークを採用している。
ほとんどの研究は、それぞれのエッジに対して因果干渉を独立に行うことによって、どのエッジがLM回路に属するかを決定するが、これはモデルサイズに悪影響を及ぼす。
エッジ属性パッチ(EAP: Edge Attribution patching)は、介入に対する勾配に基づく近似であり、この問題に対するスケーラブルだが不完全な解決策として現れている。
本稿では,回路のコア特性をよりよく維持することを目的とした,統合勾配付きEAP(EAP-IG)手法を提案する。
回路は、回路の外側のすべてのモデルエッジがタスクのモデルの性能を変えることなく緩和できるならば忠実である;忠実さは、完全なモデルではなく、学習回路を正当化するものである。
EAPを用いた回路はEAP-IGを用いた回路に比べて信頼性が低いことを示した。
より一般に、モデルがタスクを解くために使用するメカニズムを比較するために回路を使用する場合、重なりではなく忠実さが測定すべきものであると結論付けている。
関連論文リスト
- Adversarial Circuit Evaluation [1.1893676124374688]
文献中の3つの回路(IOI, Great-than, docstring)を対角的に評価した。
我々は,全モデルの出力と回路の出力とのKLのばらつきを測定し,再サンプリングアブレーションによって計算し,最悪の性能の入力を解析する。
論文 参考訳(メタデータ) (2024-07-21T13:43:44Z) - Transformer Circuit Faithfulness Metrics are not Robust [0.04260910081285213]
回路の「忠実さ」を、モデルの計算の一部を損なうことによって測定する。
既存の回路忠実度スコアは、研究者の方法論的選択と回路の実際の構成要素の両方を反映していると結論付けている。
機械的解釈可能性の研究の最終的な目標は、ニューラルネットワークを理解することです。
論文 参考訳(メタデータ) (2024-07-11T17:59:00Z) - Functional Faithfulness in the Wild: Circuit Discovery with Differentiable Computation Graph Pruning [14.639036250438517]
本稿では、DiscoGPとともにCircuit Discoveryと呼ばれるタスクを包括的に再構築する。
DiscoGPは、回路発見のための識別可能なマスキングに基づく、新しく効果的なアルゴリズムである。
論文 参考訳(メタデータ) (2024-07-04T09:42:25Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
自動回路発見の効率的かつスケーラブルなソリューションとしてエッジプルーニングを提案する。
本手法は,従来の手法に比べてエッジ数の半分未満のGPT-2の回路を探索する。
その効率のおかげで、Edge PruningをCodeLlama-13Bにスケールしました。
論文 参考訳(メタデータ) (2024-06-24T16:40:54Z) - Automatically Identifying Local and Global Circuits with Linear Computation Graphs [45.760716193942685]
Sparse Autoencoders (SAEs) と Transcoders と呼ばれる変種を用いた回路発見パイプラインを導入する。
本手法は各ノードの因果効果を計算するために線形近似を必要としない。
GPT-2 Small: Bracket, induction, Indirect Object Identification circuits の3種類の回路を解析する。
論文 参考訳(メタデータ) (2024-05-22T17:50:04Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
シミュレーションの少ない機械学習(ML)アプローチを提案する。
提案手法により,OCCを全回路の仕様に近づけることができることを示す。
論文 参考訳(メタデータ) (2023-06-23T12:57:46Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
本研究では、Boundless DASを用いて、命令に従う間、大規模言語モデルにおける解釈可能な因果構造を効率的に探索する。
私たちの発見は、成長し、最も広くデプロイされている言語モデルの内部構造を忠実に理解するための第一歩です。
論文 参考訳(メタデータ) (2023-05-15T17:15:40Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
畳み込みニューラルネットワークは,計算オーバーヘッドが大きいにもかかわらず,コンピュータビジョンタスクの実行において大きな成功を収めている。
構造的(チャネル)プルーニングは、通常、ネットワーク構造を保ちながらモデルの冗長性を低減するために適用される。
既存の構造化プルーニング法では、手作りのルールが必要であり、これは大きなプルーニング空間に繋がる可能性がある。
論文 参考訳(メタデータ) (2020-11-04T07:43:01Z) - Unbiased Risk Estimators Can Mislead: A Case Study of Learning with
Complementary Labels [92.98756432746482]
我々は,補完ラベルを用いた学習という,弱教師付き問題を研究する。
勾配推定の品質はリスク最小化においてより重要であることを示す。
本稿では,ゼロバイアスと分散の低減を両立させる新しい補助的相補的損失(SCL)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-05T04:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。