The Unreasonable Ineffectiveness of the Deeper Layers
- URL: http://arxiv.org/abs/2403.17887v1
- Date: Tue, 26 Mar 2024 17:20:04 GMT
- Title: The Unreasonable Ineffectiveness of the Deeper Layers
- Authors: Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, Daniel A. Roberts,
- Abstract summary: We study a simple layer-pruning strategy for popular families of open-weight pretrained LLMs.
We find minimal degradation of performance until after a large fraction of the layers are removed.
From a scientific perspective, the robustness of these LLMs to the deletion of layers implies either that current pretraining methods are not properly leveraging the parameters in the deeper layers of the network or that the shallow layers play a critical role in storing knowledge.
- Score: 5.984361440126354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We empirically study a simple layer-pruning strategy for popular families of open-weight pretrained LLMs, finding minimal degradation of performance on different question-answering benchmarks until after a large fraction (up to half) of the layers are removed. To prune these models, we identify the optimal block of layers to prune by considering similarity across layers; then, to "heal" the damage, we perform a small amount of finetuning. In particular, we use parameter-efficient finetuning (PEFT) methods, specifically quantization and Low Rank Adapters (QLoRA), such that each of our experiments can be performed on a single A100 GPU. From a practical perspective, these results suggest that layer pruning methods can complement other PEFT strategies to further reduce computational resources of finetuning on the one hand, and can improve the memory and latency of inference on the other hand. From a scientific perspective, the robustness of these LLMs to the deletion of layers implies either that current pretraining methods are not properly leveraging the parameters in the deeper layers of the network or that the shallow layers play a critical role in storing knowledge.
Related papers
- A Sliding Layer Merging Method for Efficient Depth-Wise Pruning in LLMs [14.514670828712669]
This paper reveals the "Patch-like" feature relationship between layers in large language models by analyzing the correlation of the outputs of different layers in the reproducing kernel Hilbert space.
We propose a sliding layer merging method that dynamically selects and fuses consecutive layers from top to bottom according to a pre-defined similarity threshold.
Our method outperforms existing pruning techniques in both zero-shot inference performance and retraining recovery quality after pruning.
arXiv Detail & Related papers (2025-02-26T14:15:24Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - Reassessing Layer Pruning in LLMs: New Insights and Methods [24.394438652261982]
We show that a simple approach, i.e., pruning the final 25% of layers followed by fine-tuning the textttlm_head and the remaining last three layer, yields remarkably strong performance.
We release the optimal model weights on Hface, and the code is available on GitHub.
arXiv Detail & Related papers (2024-11-23T13:31:16Z) - Llama SLayer 8B: Shallow Layers Hold the Key to Knowledge Injection [73.06596715100859]
We study the importance of each layer in finding the optimal layer range for knowledge injection.
We propose the S strategy, a post-pretraining strategy of selectively enhancing shallow layers while pruning the less effective deep ones.
Based on this strategy, we introduce Llama Slayer-8B and Llama Slayer-8B-Instruct.
arXiv Detail & Related papers (2024-10-03T09:28:59Z) - Investigating Layer Importance in Large Language Models [28.156622049937216]
Large language models (LLMs) have gained increasing attention due to their prominent ability to understand and process texts.
The lack of understanding of LLMs has obstructed the deployment in safety-critical scenarios and hindered the development of better models.
This study identifies cornerstone layers in LLMs and underscores their critical role for future research.
arXiv Detail & Related papers (2024-09-22T09:53:13Z) - A deeper look at depth pruning of LLMs [49.30061112976263]
Large Language Models (LLMs) are resource-intensive to train but more costly to deploy in production.
Recent work has attempted to prune blocks of LLMs based on cheap proxies for estimating block importance.
We show that adaptive metrics exhibit a trade-off in performance between tasks.
arXiv Detail & Related papers (2024-07-23T08:40:27Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - FinerCut: Finer-grained Interpretable Layer Pruning for Large Language Models [54.787308652357794]
FinerCut is a new form of fine-grained layer pruning for transformer networks.
Our approach retains 90% performance of Llama3-8B with 25% layers removed, and 95% performance of Llama3-70B with 30% layers removed, all without fine-tuning or post-pruning reconstruction.
arXiv Detail & Related papers (2024-05-28T14:21:15Z) - Effective Layer Pruning Through Similarity Metric Perspective [0.0]
Deep neural networks have been the predominant paradigm in machine learning for solving cognitive tasks.
Pruning structures from these models is a straightforward approach to reducing network complexity.
Layer pruning often hurts the network predictive ability (i.e., accuracy) at high compression rates.
This work introduces an effective layer-pruning strategy that meets all underlying properties pursued by pruning methods.
arXiv Detail & Related papers (2024-05-27T11:54:51Z) - Streamlining Redundant Layers to Compress Large Language Models [21.27944103424621]
This paper introduces LLM-Streamline, a pioneer work on layer pruning for large language models (LLMs)
LLM-Streamline comprises two parts: layer pruning, which removes consecutive layers with the lowest importance based on target sparsity, and layer replacement, a novel module that trains a lightweight network to replace the pruned layers to mitigate performance loss.
Experiments show that LLM-Streamline outperforms both previous and concurrent state-of-the-art pruning methods in terms of both performance and training efficiency.
arXiv Detail & Related papers (2024-03-28T04:12:13Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You Expect [38.148626520751385]
We show that many layers of Large Language Models (LLMs) exhibit high similarity, and some layers play a negligible role in network functionality.
We propose a straightforward pruning approach: layer removal, in which we directly delete the redundant layers.
Experiments demonstrate that our method, which we call ShortGPT, significantly outperforms previous state-of-the-art (SOTA) methods in model pruning.
arXiv Detail & Related papers (2024-03-06T17:04:18Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity [88.62935593360162]
Large Language Models (LLMs) are renowned for their remarkable performance across diverse domains.
We introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios, termed as Outlier Weighed Layerwise sparsity (OWL)
OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively.
arXiv Detail & Related papers (2023-10-08T14:22:58Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - Gradient-based Weight Density Balancing for Robust Dynamic Sparse
Training [59.48691524227352]
Training a sparse neural network from scratch requires optimizing connections at the same time as the connections themselves.
While the connections per layer are optimized multiple times during training, the density of each layer typically remains constant.
We propose Global Gradient-based Redistribution, a technique which distributes weights across all layers - adding more weights to the layers that need them most.
arXiv Detail & Related papers (2022-10-25T13:32:09Z) - Why Layer-Wise Learning is Hard to Scale-up and a Possible Solution via
Accelerated Downsampling [19.025707054206457]
Layer-wise learning can achieve state-of-the-art performance in image classification on various datasets.
Previous studies of layer-wise learning are limited to networks with simple hierarchical structures.
This paper reveals the fundamental reason that impedes the scale-up of layer-wise learning is due to the relatively poor separability of the feature space in shallow layers.
arXiv Detail & Related papers (2020-10-15T21:51:43Z) - Layer-adaptive sparsity for the Magnitude-based Pruning [88.37510230946478]
We propose a novel importance score for global pruning, coined layer-adaptive magnitude-based pruning (LAMP) score.
LAMP consistently outperforms popular existing schemes for layerwise sparsity selection.
arXiv Detail & Related papers (2020-10-15T09:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.