A deeper look at depth pruning of LLMs
- URL: http://arxiv.org/abs/2407.16286v1
- Date: Tue, 23 Jul 2024 08:40:27 GMT
- Title: A deeper look at depth pruning of LLMs
- Authors: Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, Pavlo Molchanov,
- Abstract summary: Large Language Models (LLMs) are resource-intensive to train but more costly to deploy in production.
Recent work has attempted to prune blocks of LLMs based on cheap proxies for estimating block importance.
We show that adaptive metrics exhibit a trade-off in performance between tasks.
- Score: 49.30061112976263
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are not only resource-intensive to train but even more costly to deploy in production. Therefore, recent work has attempted to prune blocks of LLMs based on cheap proxies for estimating block importance, effectively removing 10% of blocks in well-trained LLaMa-2 and Mistral 7b models without any significant degradation of downstream metrics. In this paper, we explore different block importance metrics by considering adaptive metrics such as Shapley value in addition to static ones explored in prior work. We show that adaptive metrics exhibit a trade-off in performance between tasks i.e., improvement on one task may degrade performance on the other due to differences in the computed block influences. Furthermore, we extend this analysis from a complete block to individual self-attention and feed-forward layers, highlighting the propensity of the self-attention layers to be more amendable to pruning, even allowing removal of upto 33% of the self-attention layers without incurring any performance degradation on MMLU for Mistral 7b (significant reduction in costly maintenance of KV-cache). Finally, we look at simple performance recovery techniques to emulate the pruned layers by training lightweight additive bias or low-rank linear adapters. Performance recovery using emulated updates avoids performance degradation for the initial blocks (up to 5% absolute improvement on MMLU), which is either competitive or superior to the learning-based technique.
Related papers
- Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training [27.857935426067076]
Small language models (SLMs) have attracted considerable attention due to their broad range of applications in edge devices.
To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training.
We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch
arXiv Detail & Related papers (2025-02-05T18:57:40Z) - FlexiGPT: Pruning and Extending Large Language Models with Low-Rank Weight Sharing [59.12511498024836]
We present a method to prune large language models (LLMs) that selectively prunes model blocks based on an importance score.
We propose a principled metric to replace each pruned block using a weight-sharing mechanism.
Empirical evaluations demonstrate substantial performance gains over existing methods.
arXiv Detail & Related papers (2025-01-24T18:46:37Z) - SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training [60.9776082805359]
Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to training instability.
This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets.
We propose Spike-Aware Adam with Momentum Reset, a novel designed to counteract gradient spikes through momentum reset and spike-aware clipping.
arXiv Detail & Related papers (2025-01-12T15:21:22Z) - LLM-BIP: Structured Pruning for Large Language Models with Block-Wise Forward Importance Propagation [0.0]
We propose a more accurate pruning metric based on the block-wise importance score propagation.
We evaluate the proposed method using LLaMA-7B, Vicuna-7B, and LLaMA-13B across common zero-shot tasks.
arXiv Detail & Related papers (2024-12-09T11:57:16Z) - PAT: Pruning-Aware Tuning for Large Language Models [19.622152991641045]
Large language models excel in language tasks, especially with supervised fine-tuning after pre-training.
Traditional post-hoc pruning often leads to significant performance loss.
We propose the Pruning-Aware Tuning (PAT) paradigm to eliminate model redundancy.
arXiv Detail & Related papers (2024-08-27T01:04:14Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z) - The Unreasonable Ineffectiveness of the Deeper Layers [5.984361440126354]
We study a simple layer-pruning strategy for popular families of open-weight pretrained LLMs.
We find minimal degradation of performance until after a large fraction of the layers are removed.
From a scientific perspective, the robustness of these LLMs to the deletion of layers implies either that current pretraining methods are not properly leveraging the parameters in the deeper layers of the network or that the shallow layers play a critical role in storing knowledge.
arXiv Detail & Related papers (2024-03-26T17:20:04Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.