論文の概要: ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis
- arxiv url: http://arxiv.org/abs/2403.17936v1
- Date: Tue, 26 Mar 2024 17:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 14:08:24.507092
- Title: ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis
- Title(参考訳): 共音声ジェスチャ合成のための多モード会話拡散
- Authors: Muhammad Hamza Mughal, Rishabh Dabral, Ikhsanul Habibie, Lucia Donatelli, Marc Habermann, Christian Theobalt,
- Abstract要約: マルチモーダルなジェスチャー合成のための拡散に基づくアプローチであるConvoFusionを提案する。
提案手法は,条件の異なる条件が与える影響をユーザが調節できる2つの誘導目標を提案する。
本手法は,モノログジェスチャを生成するか,会話ジェスチャを生成するかの訓練が可能である。
- 参考スコア(独自算出の注目度): 50.69464138626748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gestures play a key role in human communication. Recent methods for co-speech gesture generation, while managing to generate beat-aligned motions, struggle generating gestures that are semantically aligned with the utterance. Compared to beat gestures that align naturally to the audio signal, semantically coherent gestures require modeling the complex interactions between the language and human motion, and can be controlled by focusing on certain words. Therefore, we present ConvoFusion, a diffusion-based approach for multi-modal gesture synthesis, which can not only generate gestures based on multi-modal speech inputs, but can also facilitate controllability in gesture synthesis. Our method proposes two guidance objectives that allow the users to modulate the impact of different conditioning modalities (e.g. audio vs text) as well as to choose certain words to be emphasized during gesturing. Our method is versatile in that it can be trained either for generating monologue gestures or even the conversational gestures. To further advance the research on multi-party interactive gestures, the DnD Group Gesture dataset is released, which contains 6 hours of gesture data showing 5 people interacting with one another. We compare our method with several recent works and demonstrate effectiveness of our method on a variety of tasks. We urge the reader to watch our supplementary video at our website.
- Abstract(参考訳): ジェスチャーは人間のコミュニケーションにおいて重要な役割を果たす。
近年の共同音声ジェスチャ生成手法は、ビートアライメントされた動作を生成するとともに、その発話にセマンティックに整合したジェスチャーを生成するのに苦労している。
音声信号と自然に一致したビートジェスチャと比較して、意味的コヒーレントなジェスチャーは、言語と人間の動作の間の複雑な相互作用をモデル化する必要がある。
そこで本研究では,多モーダル音声入力に基づくジェスチャを生成するだけでなく,ジェスチャ合成における制御性も向上できる,多モーダルジェスチャー合成のための拡散型アプローチであるConvoFusionを提案する。
そこで本手法では,異なる条件付きモーダル(例えば音声とテキスト)の影響をユーザが調整し,ジェスチャーで強調すべき単語を選択するための2つのガイダンス手法を提案する。
本手法は,モノログジェスチャを生成するか,会話ジェスチャを生成するかの訓練が可能である。
DnD Group Gestureデータセットは、多人数の対話型ジェスチャーの研究をさらに進めるために、6時間のジェスチャーデータを含む。
提案手法を最近のいくつかの研究と比較し,様々な課題における本手法の有効性を実証する。
私たちは読者に、私たちのウェブサイトで補足ビデオを見るように促します。
関連論文リスト
- Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs [67.27840327499625]
本稿では,デジタル文字の表情と上半身ジェスチャーを同時に合成するマルチモーダル学習手法を提案する。
提案手法は, 映像データから直接推定される, まばらな顔のランドマークと上体関節から学習し, もっともらしい感情的性格運動を生成する。
論文 参考訳(メタデータ) (2024-06-26T04:53:11Z) - Freetalker: Controllable Speech and Text-Driven Gesture Generation Based
on Diffusion Models for Enhanced Speaker Naturalness [45.90256126021112]
我々は、自然発生(例えば、共音声ジェスチャー)と非自然発生(例えば、表彰台を動き回る)の両方を生成するための最初のフレームワークであるFreeTalkerを紹介する。
具体的には、音声によるジェスチャーとテキストによる動作の統一表現を用いた話者動作生成のための拡散モデルについて訓練する。
論文 参考訳(メタデータ) (2024-01-07T13:01:29Z) - LivelySpeaker: Towards Semantic-Aware Co-Speech Gesture Generation [41.42316077949012]
セマンティクスを意識した音声ジェスチャー生成を実現するフレームワークであるLivelySpeakerを紹介する。
本手法では,タスクをスクリプトベースのジェスチャー生成とオーディオガイドによるリズム改善の2段階に分割する。
新たな2段階生成フレームワークでは,妊娠スタイルの変更など,いくつかの応用が可能となった。
論文 参考訳(メタデータ) (2023-09-17T15:06:11Z) - QPGesture: Quantization-Based and Phase-Guided Motion Matching for
Natural Speech-Driven Gesture Generation [8.604430209445695]
音声によるジェスチャー生成は、人間の動きのランダムなジッタのため、非常に困難である。
本稿では,新しい量子化に基づく位相誘導型モーションマッチングフレームワークを提案する。
本手法は,音声によるジェスチャー生成における近年の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:31:25Z) - Audio-Driven Co-Speech Gesture Video Generation [92.15661971086746]
音声駆動型音声合成におけるこの課題を定義し,検討する。
私たちの重要な洞察は、共同音声ジェスチャーは共通の動きパターンと微妙なリズムダイナミクスに分解できるということです。
本稿では,再利用可能な音声のジェスチャーパターンを効果的に捉えるための新しいフレームワークであるAudio-driveN Gesture vIdeo gEneration(ANGIE)を提案する。
論文 参考訳(メタデータ) (2022-12-05T15:28:22Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z) - Learning Hierarchical Cross-Modal Association for Co-Speech Gesture
Generation [107.10239561664496]
協調音声ジェスチャ生成のためのHA2G(Hierarchical Audio-to-Gesture)という新しいフレームワークを提案する。
提案手法は,現実的な共同音声ジェスチャーを描画し,従来手法よりも明確なマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-03-24T16:33:29Z) - Speech Gesture Generation from the Trimodal Context of Text, Audio, and
Speaker Identity [21.61168067832304]
本稿では、音声テキスト、音声、話者識別のマルチモーダルコンテキストを用いてジェスチャーを確実に生成する自動ジェスチャー生成モデルを提案する。
提案手法を用いた評価実験により,提案したジェスチャー生成モデルは既存のエンドツーエンド生成モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-09-04T11:42:45Z) - Gesticulator: A framework for semantically-aware speech-driven gesture
generation [17.284154896176553]
任意のビートとセマンティックなジェスチャーを同時に生成するモデルを提案する。
深層学習に基づくモデルでは、音声の音響的表現と意味的表現の両方を入力とし、入力として関節角回転の列としてジェスチャーを生成する。
結果として得られるジェスチャーは、仮想エージェントとヒューマノイドロボットの両方に適用できる。
論文 参考訳(メタデータ) (2020-01-25T14:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。