Circuit-centric Genetic Algorithm (CGA) for Analog and Radio-Frequency Circuit Optimization
- URL: http://arxiv.org/abs/2403.17938v1
- Date: Sun, 19 Nov 2023 02:33:22 GMT
- Title: Circuit-centric Genetic Algorithm (CGA) for Analog and Radio-Frequency Circuit Optimization
- Authors: Mingi Kwon, Yeonjun Lee, Ickhyun Song,
- Abstract summary: This paper presents an automated method for optimizing parameters in analog/high-frequency circuits.
The design target includes a reduction of power consumption and noise figure and an increase in conversion gain.
The concept of the Circuit-centric Genetic Algorithm (CGA) is proposed as a viable approach.
- Score: 3.0996501197166975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an automated method for optimizing parameters in analog/high-frequency circuits, aiming to maximize performance parameters of a radio-frequency (RF) receiver. The design target includes a reduction of power consumption and noise figure and an increase in conversion gain. This study investigates the use of an artificial algorithm for the optimization of a receiver, illustrating how to fulfill the performance parameters with diverse circuit parameters. To overcome issues observed in the traditional Genetic Algorithm (GA), the concept of the Circuit-centric Genetic Algorithm (CGA) is proposed as a viable approach. The new method adopts an inference process that is simpler and computationally more efficient than the existing deep learning models. In addition, CGA offers significant advantages over manual design of finding optimal points and the conventional GA, mitigating the designer's workload while searching for superior optimum points.
Related papers
- Hybrid GRU-CNN Bilinear Parameters Initialization for Quantum
Approximate Optimization Algorithm [7.502733639318316]
We propose a hybrid optimization approach that integrates Gated Recurrent Units (GRU), Conal Neural Networks (CNN), and a bilinear strategy as an innovative alternative to conventional approximations for predicting optimal parameters of QAOA circuits.
We employ the bilinear strategy to initialize to QAOA circuit parameters at greater depths, with reference parameters obtained from GRU-CNN optimization.
arXiv Detail & Related papers (2023-11-14T03:00:39Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
We tackle the problem of finding suitable initial parameters for variational optimization by employing a meta-learning technique using recurrent neural networks.
We investigate this technique with the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA)
The combination of meta learning and DC-QAOA enables us to find optimal initial parameters for different models, such as MaxCut problem and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2022-06-20T18:57:50Z) - Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization [6.599793419469274]
This paper presents a reinforcement learning method to automate the analog circuit parameter optimization.
It is inspired by human experts who rely on domain knowledge of analog circuit design.
Experimental results on exemplary circuits show it achieves human-level design accuracy (99%) 1.5X efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-04-27T13:58:51Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - A Study of Genetic Algorithms for Hyperparameter Optimization of Neural
Networks in Machine Translation [0.0]
We propose an automatic tuning method modeled after Darwin's Survival of the Fittest Theory via a Genetic Algorithm.
Research results show that the proposed method, a GA, outperforms a random selection of hyper parameters.
arXiv Detail & Related papers (2020-09-15T02:24:16Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.