Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach
- URL: http://arxiv.org/abs/2404.11253v1
- Date: Wed, 17 Apr 2024 11:00:12 GMT
- Title: Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach
- Authors: Alexander BenÃtez-Buenache, Queralt Portell-Montserrat,
- Abstract summary: Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
- Score: 49.89480853499917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems using parameterized quantum circuits (PQCs). The design of these circuits influences the ability of the algorithm to efficiently explore the solution space and converge to more optimal solutions. Choosing an appropriate circuit topology, gate set, and parameterization scheme is determinant to achieve good performance. In addition, it is not only problem-dependent, but the quantum hardware used also has a significant impact on the results. Therefore, we present BPQCO, a Bayesian Optimization-based strategy to search for optimal PQCs adapted to the problem to be solved and to the characteristics and limitations of the chosen quantum hardware. To this end, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems (a synthetic dataset and the well-known Iris dataset), focusing on the design of the circuit ansatz. In addition, we study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers. To mitigate the effect of noise, two alternative optimization strategies based on the characteristics of the quantum system are proposed. The results obtained confirm the relevance of the presented approach and allow its adoption in further work based on the use of PQCs.
Related papers
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio.
We propose a novel scalable framework, denoted PO-QA, to investigate the variation of quantum parameters.
Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning.
arXiv Detail & Related papers (2024-07-29T10:26:28Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
This thesis focuses on identifying functional quantum circuits in noisy quantum hardware.
We introduce a tensor-based quantum circuit encoding, restrictions on environment dynamics to explore the search space of possible circuits efficiently.
In dealing with various VQAs, our RL-based QAS outperforms existing QAS.
arXiv Detail & Related papers (2024-02-21T12:30:39Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Quantum Circuit Unoptimization [0.6449786007855248]
We construct a quantum algorithmic primitive called quantum circuit unoptimization.
It makes a given quantum circuit complex by introducing some redundancies while preserving circuit equivalence.
We use quantum circuit unoptimization to generate compiler benchmarks and evaluate circuit optimization performance.
arXiv Detail & Related papers (2023-11-07T08:38:18Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Gradient-free quantum optimization on NISQ devices [0.0]
We consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning.
We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters.
arXiv Detail & Related papers (2020-12-23T10:24:54Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.