Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection
- URL: http://arxiv.org/abs/2403.17978v1
- Date: Sat, 23 Mar 2024 15:49:13 GMT
- Title: Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection
- Authors: Mohammad Mahmudul Alam, Edward Raff, Stella Biderman, Tim Oates, James Holt,
- Abstract summary: We introduce Holographic Global Convolutional Networks (HGConv) that utilize the properties of Holographic Reduced Representations (HRR)
Unlike other global convolutional methods, our method does not require any intricate kernel computation or crafted kernel design.
The proposed method has achieved new SOTA results on Microsoft Malware Classification Challenge, Drebin, and EMBER malware benchmarks.
- Score: 50.7263393517558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware detection is an interesting and valuable domain to work in because it has significant real-world impact and unique machine-learning challenges. We investigate existing long-range techniques and benchmarks and find that they're not very suitable in this problem area. In this paper, we introduce Holographic Global Convolutional Networks (HGConv) that utilize the properties of Holographic Reduced Representations (HRR) to encode and decode features from sequence elements. Unlike other global convolutional methods, our method does not require any intricate kernel computation or crafted kernel design. HGConv kernels are defined as simple parameters learned through backpropagation. The proposed method has achieved new SOTA results on Microsoft Malware Classification Challenge, Drebin, and EMBER malware benchmarks. With log-linear complexity in sequence length, the empirical results demonstrate substantially faster run-time by HGConv compared to other methods achieving far more efficient scaling even with sequence length $\geq 100,000$.
Related papers
- HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation [12.606794661369959]
We propose HRDecoder, a simple High-Resolution Decoder network for fundus lesion segmentation.
It integrates a high-resolution representation learning module to capture fine-grained local features and a high-resolution fusion module to fuse multi-scale predictions.
Our method effectively improves the overall segmentation accuracy of fundus lesions while consuming reasonable memory and computational overhead, and maintaining satisfying inference speed.
arXiv Detail & Related papers (2024-11-06T15:13:31Z) - Ada-HGNN: Adaptive Sampling for Scalable Hypergraph Neural Networks [19.003370580994936]
We introduce a new adaptive sampling strategy specifically designed for hypergraphs, which tackles their unique complexities in an efficient manner.
We also present a Random Hyperedge Augmentation (RHA) technique and an additional Multilayer Perceptron (MLP) module to improve the robustness and capabilities of our approach.
arXiv Detail & Related papers (2024-05-22T06:15:50Z) - Quantum Algorithm Exploration using Application-Oriented Performance
Benchmarks [0.0]
The QED-C suite of Application-Oriented Benchmarks provides the ability to gauge performance characteristics of quantum computers.
We investigate challenges in broadening the relevance of this benchmarking methodology to applications of greater complexity.
arXiv Detail & Related papers (2024-02-14T06:55:50Z) - Multi-Level GNN Preconditioner for Solving Large Scale Problems [0.0]
Graph Neural Networks (GNNs) are great for learning from unstructured data like meshes but are often limited to small-scale problems.
This paper introduces a novel preconditioner integrating a GNN model within a multi-level Domain Decomposition framework.
The proposed GNN-based preconditioner is used to enhance the efficiency of a Krylov method, resulting in a hybrid solver that can converge with any desired level of accuracy.
arXiv Detail & Related papers (2024-02-13T08:50:14Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Lightweight Jet Reconstruction and Identification as an Object Detection
Task [5.071565475111431]
We apply convolutional techniques to end-to-end jet identification and reconstruction tasks encountered at the CERN Large Hadron Collider.
PFJet-SSD performs simultaneous localization, classification and regression tasks to cluster jets and reconstruct their features.
We show that the ternary network closely matches the performance of its full-precision equivalent and outperforms the state-of-the-art rule-based algorithm.
arXiv Detail & Related papers (2022-02-09T15:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.