Multi-Level GNN Preconditioner for Solving Large Scale Problems
- URL: http://arxiv.org/abs/2402.08296v1
- Date: Tue, 13 Feb 2024 08:50:14 GMT
- Title: Multi-Level GNN Preconditioner for Solving Large Scale Problems
- Authors: Matthieu Nastorg (TAU, IFPEN), Jean-Marc Gratien (IFPEN), Thibault
Faney (IFPEN), Michele Alessandro Bucci (TAU), Guillaume Charpiat (TAU), Marc
Schoenauer (TAU)
- Abstract summary: Graph Neural Networks (GNNs) are great for learning from unstructured data like meshes but are often limited to small-scale problems.
This paper introduces a novel preconditioner integrating a GNN model within a multi-level Domain Decomposition framework.
The proposed GNN-based preconditioner is used to enhance the efficiency of a Krylov method, resulting in a hybrid solver that can converge with any desired level of accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale numerical simulations often come at the expense of daunting
computations. High-Performance Computing has enhanced the process, but adapting
legacy codes to leverage parallel GPU computations remains challenging.
Meanwhile, Machine Learning models can harness GPU computations effectively but
often struggle with generalization and accuracy. Graph Neural Networks (GNNs),
in particular, are great for learning from unstructured data like meshes but
are often limited to small-scale problems. Moreover, the capabilities of the
trained model usually restrict the accuracy of the data-driven solution. To
benefit from both worlds, this paper introduces a novel preconditioner
integrating a GNN model within a multi-level Domain Decomposition framework.
The proposed GNN-based preconditioner is used to enhance the efficiency of a
Krylov method, resulting in a hybrid solver that can converge with any desired
level of accuracy. The efficiency of the Krylov method greatly benefits from
the GNN preconditioner, which is adaptable to meshes of any size and shape, is
executed on GPUs, and features a multi-level approach to enforce the
scalability of the entire process. Several experiments are conducted to
validate the numerical behavior of the hybrid solver, and an in-depth analysis
of its performance is proposed to assess its competitiveness against a C++
legacy solver.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - A model-constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach to solve compressible Euler equations.
To validate the effectiveness, stability, and generalizability of our novel DGNet approach, we present numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - Gradient-free variational learning with conditional mixture networks [39.827869318925494]
Conditional mixture networks (CMNs) are suitable for fast, gradient-free inference and can solve complex classification tasks.
We validate this approach by training two-layer CMNs on standard benchmarks from the UCI repository.
Our method, CAVI-CMN, achieves competitive and often superior predictive accuracy compared to maximum likelihood estimation (MLE) with backpropagation.
arXiv Detail & Related papers (2024-08-29T10:43:55Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
We propose a new framework for integrated model learning and predictive control.
We show that our framework can deliver better closed-loop performance than existing state-of-the-art methods.
arXiv Detail & Related papers (2023-12-20T06:25:02Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Efficient and Robust Mixed-Integer Optimization Methods for Training
Binarized Deep Neural Networks [0.07614628596146598]
We study deep neural networks with binary activation functions and continuous or integer weights (BDNN)
We show that the BDNN can be reformulated as a mixed-integer linear program with bounded weight space which can be solved to global optimality by classical mixed-integer programming solvers.
For the first time a robust model is presented which enforces robustness of the BDNN during training.
arXiv Detail & Related papers (2021-10-21T18:02:58Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.