Lightweight Convolution Transformer for Cross-patient Seizure Detection
in Multi-channel EEG Signals
- URL: http://arxiv.org/abs/2305.04325v1
- Date: Sun, 7 May 2023 16:43:52 GMT
- Title: Lightweight Convolution Transformer for Cross-patient Seizure Detection
in Multi-channel EEG Signals
- Authors: Salim Rukhsar and Anil K. Tiwari
- Abstract summary: This study proposes a novel deep learning architecture based lightweight convolution transformer (LCT)
The transformer is able to learn spatial and temporal correlated information simultaneously from the multi-channel electroencephalogram (EEG) signal to detect seizures at smaller segment lengths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Epilepsy is a neurological illness affecting the brain that makes
people more likely to experience frequent, spontaneous seizures. There has to
be an accurate automated method for measuring seizure frequency and severity in
order to assess the efficacy of pharmacological therapy for epilepsy. The drug
quantities are often derived from patient reports which may cause significant
issues owing to inadequate or inaccurate descriptions of seizures and their
frequencies. Methods and materials: This study proposes a novel deep learning
architecture based lightweight convolution transformer (LCT). The transformer
is able to learn spatial and temporal correlated information simultaneously
from the multi-channel electroencephalogram (EEG) signal to detect seizures at
smaller segment lengths. In the proposed model, the lack of translation
equivariance and localization of ViT is reduced using convolution tokenization,
and rich information from the transformer encoder is extracted by sequence
pooling instead of the learnable class token. Results: Extensive experimental
results demonstrate that the proposed model of cross-patient learning can
effectively detect seizures from the raw EEG signals. The accuracy and F1-score
of seizure detection in the cross-patient case on the CHB-MIT dataset are shown
to be 96.31% and 96.32%, respectively, at 0.5 sec segment length. In addition,
the performance metrics show that the inclusion of inductive biases and
attention-based pooling in the model enhances the performance and reduces the
number of transformer encoder layers, which significantly reduces the
computational complexity. In this research work, we provided a novel approach
to enhance efficiency and simplify the architecture for multi-channel automated
seizure detection.
Related papers
- From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
One-third of people suffering from mesial temporal lobe epilepsy exhibit drug resistance.
Key part in anti-seizure medication development is the capability of detecting and quantifying epileptic seizures.
In this study, we introduced a seizure detection pipeline based on deep learning models applied to raw EEG signals.
arXiv Detail & Related papers (2024-10-04T12:52:37Z) - SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE.
Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
arXiv Detail & Related papers (2024-06-25T13:21:01Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - ScatterFormer: Locally-Invariant Scattering Transformer for
Patient-Independent Multispectral Detection of Epileptiform Discharges [7.726017342725144]
We propose an invariant scattering transform-based hierarchical Transformer that specifically pays attention to subtle features.
In particular, the disentangled frequency-aware attention (FAA) enables the Transformer to capture clinically informative high-frequency components.
Our proposed model achieves median AUCROC and accuracy of 98.14%, 96.39% in patients with Rolandic epilepsy.
arXiv Detail & Related papers (2023-04-26T10:10:58Z) - EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel
Transformers [1.0970480513577103]
Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures.
EEG is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy.
Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy.
arXiv Detail & Related papers (2022-09-18T03:03:47Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Patient-Specific Seizure Prediction Using Single Seizure
Electroencephalography Recording [16.395309518579914]
We propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG.
Our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.
arXiv Detail & Related papers (2020-11-14T03:45:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.