The Impact of Syntactic and Semantic Proximity on Machine Translation with Back-Translation
- URL: http://arxiv.org/abs/2403.18031v1
- Date: Tue, 26 Mar 2024 18:38:14 GMT
- Title: The Impact of Syntactic and Semantic Proximity on Machine Translation with Back-Translation
- Authors: Nicolas Guerin, Shane Steinert-Threlkeld, Emmanuel Chemla,
- Abstract summary: We conduct experiments with artificial languages to determine what properties of languages make back-translation an effective training method.
We find, contrary to popular belief, that (i) parallel word frequency distributions, (ii) partially shared vocabulary, and (iii) similar syntactic structure across languages are not sufficient to explain the success of back-translation.
We conjecture that rich semantic dependencies, parallel across languages, are at the root of the success of unsupervised methods based on back-translation.
- Score: 7.557957450498644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised on-the-fly back-translation, in conjunction with multilingual pretraining, is the dominant method for unsupervised neural machine translation. Theoretically, however, the method should not work in general. We therefore conduct controlled experiments with artificial languages to determine what properties of languages make back-translation an effective training method, covering lexical, syntactic, and semantic properties. We find, contrary to popular belief, that (i) parallel word frequency distributions, (ii) partially shared vocabulary, and (iii) similar syntactic structure across languages are not sufficient to explain the success of back-translation. We show however that even crude semantic signal (similar lexical fields across languages) does improve alignment of two languages through back-translation. We conjecture that rich semantic dependencies, parallel across languages, are at the root of the success of unsupervised methods based on back-translation. Overall, the success of unsupervised machine translation was far from being analytically guaranteed. Instead, it is another proof that languages of the world share deep similarities, and we hope to show how to identify which of these similarities can serve the development of unsupervised, cross-linguistic tools.
Related papers
- Can Machine Translation Bridge Multilingual Pretraining and Cross-lingual Transfer Learning? [8.630930380973489]
This paper investigates the potential benefits of employing machine translation as a continued training objective to enhance language representation learning.
Our results show that, contrary to expectations, machine translation as the continued training fails to enhance cross-lingual representation learning.
We conclude that explicit sentence-level alignment in the cross-lingual scenario is detrimental to cross-lingual transfer pretraining.
arXiv Detail & Related papers (2024-03-25T13:53:04Z) - VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
We propose a cross-lingual pre-trained model VECO2.0 based on contrastive learning with multi-granularity alignments.
Specifically, the sequence-to-sequence alignment is induced to maximize the similarity of the parallel pairs and minimize the non-parallel pairs.
token-to-token alignment is integrated to bridge the gap between synonymous tokens excavated via the thesaurus dictionary from the other unpaired tokens in a bilingual instance.
arXiv Detail & Related papers (2023-04-17T12:23:41Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
Morphologically rich languages pose difficulties to machine translation.
A large amount of differently inflected word surface forms entails a larger vocabulary.
Some inflected forms of infrequent terms typically do not appear in the training corpus.
Linguistic agreement requires the system to correctly match the grammatical categories between inflected word forms in the output sentence.
arXiv Detail & Related papers (2022-03-25T10:13:20Z) - Unsupervised Alignment of Distributional Word Embeddings [0.0]
Cross-domain alignment play a key role in tasks ranging from machine translation to transfer learning.
We show that the proposed approach achieves good performance on the bilingual lexicon induction task across several language pairs.
arXiv Detail & Related papers (2022-03-09T16:39:06Z) - A Call for More Rigor in Unsupervised Cross-lingual Learning [76.6545568416577]
An existing rationale for such research is based on the lack of parallel data for many of the world's languages.
We argue that a scenario without any parallel data and abundant monolingual data is unrealistic in practice.
arXiv Detail & Related papers (2020-04-30T17:06:23Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs.
UNMT can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time.
In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder.
arXiv Detail & Related papers (2020-04-21T17:26:16Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
We show that machine translation can introduce subtle artifacts that have a notable impact in existing cross-lingual models.
In natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them.
We also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.
arXiv Detail & Related papers (2020-04-09T17:54:30Z) - Refinement of Unsupervised Cross-Lingual Word Embeddings [2.4366811507669124]
Cross-lingual word embeddings aim to bridge the gap between high-resource and low-resource languages.
We propose a self-supervised method to refine the alignment of unsupervised bilingual word embeddings.
arXiv Detail & Related papers (2020-02-21T10:39:53Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word representations.
Our approach significantly improves crosslingual sentence retrieval performance over all other approaches.
It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task.
arXiv Detail & Related papers (2019-12-28T16:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.