論文の概要: COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning
- arxiv url: http://arxiv.org/abs/2403.18058v2
- Date: Sat, 02 Nov 2024 11:08:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:55.397997
- Title: COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning
- Title(参考訳): COIG-CQIA:中国におけるインストラクションの微調整に必要な品質
- Authors: Yuelin Bai, Xinrun Du, Yiming Liang, Yonggang Jin, Junting Zhou, Ziqiang Liu, Feiteng Fang, Mingshan Chang, Tianyu Zheng, Xincheng Zhang, Nuo Ma, Zekun Wang, Ruibin Yuan, Haihong Wu, Hongquan Lin, Wenhao Huang, Jiajun Zhang, Chenghua Lin, Jie Fu, Min Yang, Shiwen Ni, Ge Zhang,
- Abstract要約: 実世界の様々な資源から派生した,厳密な人的検証を行う新しい中国語指導調律データセットであるCOIG-CQIAを紹介する。
我々はCOIG-CQIAに関する広範な実験を行い、それらを強力なベースラインモデルやデータセットと比較する。
実験の結果,COIG-CQIAでトレーニングしたモデルは,様々なベンチマークで高い競争性能を達成できた。
- 参考スコア(独自算出の注目度): 37.843051974342124
- License:
- Abstract: Remarkable progress on English instruction tuning has facilitated the efficacy and reliability of large language models (LLMs). However, there remains a noticeable gap in instruction tuning for Chinese, where the complex linguistic features pose significant challenges. Existing datasets, generally distilled from English-centric LLMs, are not well-aligned with Chinese users' interaction patterns. To bridge this gap, we introduce COIG-CQIA, a new Chinese instruction tuning dataset derived from various real-world resources and undergoing rigorous human verification. We conduct extensive experiments on COIG-CQIA, and compare them with strong baseline models and datasets. The experimental results show that models trained on COIG-CQIA achieve highly competitive performance in diverse benchmarks. Additionally, our findings offer several insights for designing effective Chinese instruction-tuning datasets and data-mixing strategies. Our dataset are available at https://huggingface.co/datasets/m-a-p/COIG-CQIA.
- Abstract(参考訳): 英語のインストラクションチューニングにおける顕著な進歩は、大規模言語モデル(LLM)の有効性と信頼性を助長している。
しかし、複雑な言語的特徴が重大な課題を生じさせる中国語の指導指導には、依然として顕著なギャップが残っている。
既存のデータセットは、一般的に英語中心のLLMから抽出されるが、中国のユーザインタラクションパターンとよく一致していない。
このギャップを埋めるために,様々な現実世界のリソースから派生した,厳密な人的検証を行う新しい中国語指導調律データセットであるCOIG-CQIAを導入する。
我々はCOIG-CQIAに関する広範な実験を行い、それらを強力なベースラインモデルやデータセットと比較する。
実験の結果,COIG-CQIAでトレーニングしたモデルは,多様なベンチマークで高い競争性能を達成できた。
さらに,中国における効果的な指導訓練データセットとデータミキシング戦略を設計する上で,いくつかの知見が得られた。
データセットはhttps://huggingface.co/datasets/m-a-p/COIG-CQIAで公開しています。
関連論文リスト
- A Chinese Continuous Sign Language Dataset Based on Complex Environments [17.195286118443256]
複雑な環境に基づく中国語連続手話(CSL)のための大規模データセットを構築した。
このデータセットは、日常生活シーンから収集された5,988の連続CSLビデオクリップを含んでいる。
連続手話認識のための時間周波数ネットワーク(TFNet)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-18T13:11:15Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
マルチモーダル大言語モデル(MLLM)は、チャート質問応答(CQA)に大きな可能性を示す
近年の取り組みは、データ収集と合成によるデータセットのスケールアップに重点を置いている。
本稿では,トレーニングデータセットの強化とモデル開発を指導するための,可視化参照型指導チューニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T17:04:34Z) - CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare [12.218718086529462]
本研究は中国における総合医療ベンチマーク(CMB)に焦点を当てる。
私たちは、より大きなモデルに匹敵するスコアを得るために、より小さなベースモデルをトレーニングしました。
幅広い指導内容を統合することで,データ品質の不整合などの潜在的な問題に対処する。
論文 参考訳(メタデータ) (2024-07-29T05:00:48Z) - Research on Information Extraction of LCSTS Dataset Based on an Improved BERTSum-LSTM Model [3.942479021508835]
本稿では,改良されたBERTSum-LSTMモデルに基づくLCSTSデータセットの情報抽出手法について検討する。
BERTSum-LSTMモデルの改良により,中国語ニュース要約生成の性能が向上する。
論文 参考訳(メタデータ) (2024-06-26T14:04:15Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Kun: Answer Polishment for Chinese Self-Alignment with Instruction Back-Translation [30.053409671898933]
Kunは、手動のアノテーションに頼ることなく、大きな言語モデル(LLM)のための高品質な命令チューニングデータセットを作成するための新しいアプローチである。
我々は、Wudao、Wanjuan、SkyPileなど、さまざまな情報源から収集された不正なデータを活用して、100万以上の中国語の命令データポイントの実質的なデータセットを生成します。
論文 参考訳(メタデータ) (2024-01-12T09:56:57Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - CLEVA: Chinese Language Models EVAluation Platform [92.42981537317817]
CLEVAは,中国のLLMを階層的に評価するためのユーザフレンドリーなプラットフォームである。
当社のプラットフォームでは,LLMのパフォーマンスをさまざまな次元で評価するために標準化されたワークフローを採用し,定期的に競合するリーダボードを更新しています。
汚染を軽減するため、CLEVAは、新しいデータのかなりの割合をキュレーションし、各リーダーボードラウンドのユニークなサブセットを保証するサンプリング戦略を開発する。
マウスクリック数回とモデルAPIを必要とする使い勝手の良いインターフェースと、最小限のコーディングで徹底的な評価を行うことができる。
論文 参考訳(メタデータ) (2023-08-09T09:11:31Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。