Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
- URL: http://arxiv.org/abs/2403.18072v1
- Date: Tue, 26 Mar 2024 19:49:58 GMT
- Title: Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
- Authors: Shijie Zhong, Wanggang Shen, Tommie Catanach, Xun Huan,
- Abstract summary: We present a computational framework of predictive goal-oriented OED (GO-OED) suitable for nonlinear observation and prediction models.
GO-OED seeks the experimental design providing the greatest EIG on the QoIs.
We demonstrate the effectiveness of the overall nonlinear GO-OED method, and illustrate its differences versus conventional non-GO-OED.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal experimental design (OED) provides a systematic approach to quantify and maximize the value of experimental data. Under a Bayesian approach, conventional OED maximizes the expected information gain (EIG) on model parameters. However, we are often interested in not the parameters themselves, but predictive quantities of interest (QoIs) that depend on the parameters in a nonlinear manner. We present a computational framework of predictive goal-oriented OED (GO-OED) suitable for nonlinear observation and prediction models, which seeks the experimental design providing the greatest EIG on the QoIs. In particular, we propose a nested Monte Carlo estimator for the QoI EIG, featuring Markov chain Monte Carlo for posterior sampling and kernel density estimation for evaluating the posterior-predictive density and its Kullback-Leibler divergence from the prior-predictive. The GO-OED design is then found by maximizing the EIG over the design space using Bayesian optimization. We demonstrate the effectiveness of the overall nonlinear GO-OED method, and illustrate its differences versus conventional non-GO-OED, through various test problems and an application of sensor placement for source inversion in a convection-diffusion field.
Related papers
- Expected Information Gain Estimation via Density Approximations: Sample Allocation and Dimension Reduction [0.40964539027092906]
We formulate flexible transport-based schemes for EIG estimation in general nonlinear/non-Gaussian settings.
We show that with this optimal sample allocation, the MSE of the resulting EIG estimator converges more quickly than that of a standard nested Monte Carlo scheme.
We then address the estimation of EIG in high dimensions, by deriving gradient-based upper bounds on the mutual information lost by projecting the parameters and/or observations to lower-dimensional subspaces.
arXiv Detail & Related papers (2024-11-13T07:22:50Z) - A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal Experimental Design [0.0]
We introduce LF-GO-OED (likelihood-free goal-oriented optimal experimental design), a computational method for conducting GO-OED with nonlinear observation and prediction models.
It is specifically designed to accommodate implicit models, where the likelihood is intractable.
The method is validated on benchmark problems with existing methods, and demonstrated on scientific applications of epidemiology and neural science.
arXiv Detail & Related papers (2024-08-18T19:45:49Z) - Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space [65.44449711359724]
High-dimensional and highly-multimodal input design space of black-box function pose inherent challenges for existing methods.
We consider finding a latent space that serves as a compressed yet accurate representation of the design-value joint space.
We propose Noise-intensified Telescoping density-Ratio Estimation scheme for variational learning of an accurate latent space model.
arXiv Detail & Related papers (2024-05-27T00:11:53Z) - Variational Bayesian Optimal Experimental Design with Normalizing Flows [0.837622912636323]
Variational OED estimates a lower bound of the EIG without likelihood evaluations.
We introduce the use of normalizing flows for representing variational distributions in vOED.
We show that a composition of 4--5 layers is able to achieve lower EIG estimation bias.
arXiv Detail & Related papers (2024-04-08T14:44:21Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Model-based Causal Bayesian Optimization [78.120734120667]
We propose model-based causal Bayesian optimization (MCBO)
MCBO learns a full system model instead of only modeling intervention-reward pairs.
Unlike in standard Bayesian optimization, our acquisition function cannot be evaluated in closed form.
arXiv Detail & Related papers (2022-11-18T14:28:21Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Bayesian Sequential Optimal Experimental Design for Nonlinear Models
Using Policy Gradient Reinforcement Learning [0.0]
We formulate this sequential optimal experimental design (sOED) problem as a finite-horizon partially observable Markov decision process (POMDP)
It is built to accommodate continuous random variables, general non-Gaussian posteriors, and expensive nonlinear forward models.
We solve for the sOED policy numerically via policy gradient (PG) methods from reinforcement learning, and derive and prove the PG expression for sOED.
The overall PG-sOED method is validated on a linear-Gaussian benchmark, and its advantages over batch and greedy designs are demonstrated through a contaminant source inversion problem in a
arXiv Detail & Related papers (2021-10-28T17:47:31Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.