Paths to Equilibrium in Games
- URL: http://arxiv.org/abs/2403.18079v2
- Date: Tue, 01 Oct 2024 17:33:13 GMT
- Title: Paths to Equilibrium in Games
- Authors: Bora Yongacoglu, Gürdal Arslan, Lacra Pavel, Serdar Yüksel,
- Abstract summary: We study sequences of strategies satisfying a pairwise constraint inspired by policy updating in reinforcement learning.
Our analysis reveals a counterintuitive insight that reward deteriorating strategic updates are key to driving play to equilibrium along a satisficing path.
- Score: 6.812247730094933
- License:
- Abstract: In multi-agent reinforcement learning (MARL) and game theory, agents repeatedly interact and revise their strategies as new data arrives, producing a sequence of strategy profiles. This paper studies sequences of strategies satisfying a pairwise constraint inspired by policy updating in reinforcement learning, where an agent who is best responding in one period does not switch its strategy in the next period. This constraint merely requires that optimizing agents do not switch strategies, but does not constrain the non-optimizing agents in any way, and thus allows for exploration. Sequences with this property are called satisficing paths, and arise naturally in many MARL algorithms. A fundamental question about strategic dynamics is such: for a given game and initial strategy profile, is it always possible to construct a satisficing path that terminates at an equilibrium? The resolution of this question has implications about the capabilities or limitations of a class of MARL algorithms. We answer this question in the affirmative for normal-form games. Our analysis reveals a counterintuitive insight that reward deteriorating strategic updates are key to driving play to equilibrium along a satisficing path.
Related papers
- Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Distributed Task Management in Fog Computing: A Socially Concave Bandit
Game [7.708904950194129]
Fog computing leverages the task offloading capabilities at the network's edge to improve efficiency and enable swift responses to application demands.
We formulate the distributed task allocation problem as a social-concave game with bandit feedback.
We develop two no-regret online decision-making strategies.
arXiv Detail & Related papers (2022-03-28T08:26:14Z) - Who Leads and Who Follows in Strategic Classification? [82.44386576129295]
We argue that the order of play in strategic classification is fundamentally determined by the relative frequencies at which the decision-maker and the agents adapt to each other's actions.
We show that a decision-maker with the freedom to choose their update frequency can induce learning dynamics that converge to Stackelberg equilibria with either order of play.
arXiv Detail & Related papers (2021-06-23T16:48:46Z) - Bandit Linear Optimization for Sequential Decision Making and
Extensive-Form Games [102.23975166536326]
Tree-form sequential decision making (TFSDM) extends classical one-shot decision making by modeling tree-form interactions between an agent and a potentially adversarial environment.
It captures the online decision-making problems that each player faces in an extensive-form game, as well as Markov decision processes and partially-observable Markov decision processes where the agent conditions on observed history.
In this paper, we give the first algorithm for the bandit linear optimization problem for dilatedDM that offers both (i) linear-time losses and (ii) $O(sqrtT)$ cumulative regret in
arXiv Detail & Related papers (2021-03-08T05:00:13Z) - Disturbing Reinforcement Learning Agents with Corrupted Rewards [62.997667081978825]
We analyze the effects of different attack strategies based on reward perturbations on reinforcement learning algorithms.
We show that smoothly crafting adversarial rewards are able to mislead the learner, and that using low exploration probability values, the policy learned is more robust to corrupt rewards.
arXiv Detail & Related papers (2021-02-12T15:53:48Z) - Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit
Reasoning Strategies [78.68534915690404]
StrategyQA is a benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy.
We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts.
Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs.
arXiv Detail & Related papers (2021-01-06T19:14:23Z) - On the Impossibility of Convergence of Mixed Strategies with No Regret
Learning [10.515544361834241]
We study convergence properties of the mixed strategies that result from a general class of optimal no regret learning strategies.
We consider the class of strategies whose information set at each step is the empirical average of the opponent's realized play.
arXiv Detail & Related papers (2020-12-03T18:02:40Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay.
During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well.
Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly.
arXiv Detail & Related papers (2020-02-24T20:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.