Towards Explainable Clustering: A Constrained Declarative based Approach
- URL: http://arxiv.org/abs/2403.18101v1
- Date: Tue, 26 Mar 2024 21:00:06 GMT
- Title: Towards Explainable Clustering: A Constrained Declarative based Approach
- Authors: Mathieu Guilbert, Christel Vrain, Thi-Bich-Hanh Dao,
- Abstract summary: We aim at finding a clustering that has high quality in terms of classic clustering criteria and that is explainable.
A good global explanation of a clustering should give the characteristics of each cluster taking into account their abilities to describe its objects.
We propose a novel interpretable constrained method called ECS for declarative computation with Explainabilty-driven Selection.
- Score: 0.294944680995069
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The domain of explainable AI is of interest in all Machine Learning fields, and it is all the more important in clustering, an unsupervised task whose result must be validated by a domain expert. We aim at finding a clustering that has high quality in terms of classic clustering criteria and that is explainable, and we argue that these two dimensions must be considered when building the clustering. We consider that a good global explanation of a clustering should give the characteristics of each cluster taking into account their abilities to describe its objects (coverage) while distinguishing it from the other clusters (discrimination). Furthermore, we aim at leveraging expert knowledge, at different levels, on the structure of the expected clustering or on its explanations. In our framework an explanation of a cluster is a set of patterns, and we propose a novel interpretable constrained clustering method called ECS for declarative clustering with Explainabilty-driven Cluster Selection that integrates structural or domain expert knowledge expressed by means of constraints. It is based on the notion of coverage and discrimination that are formalized at different levels (cluster / clustering), each allowing for exceptions through parameterized thresholds. Our method relies on four steps: generation of a set of partitions, computation of frequent patterns for each cluster, pruning clusters that violates some constraints, and selection of clusters and associated patterns to build an interpretable clustering. This last step is combinatorial and we have developed a Constraint-Programming (CP) model to solve it. The method can integrate prior knowledge in the form of user constraints, both before or in the CP model.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
We present Semi-supervised clustering via Structural Entropy (SSE), a novel method that can incorporate different types of constraints from diverse sources to perform both partitioning and hierarchical clustering.
We evaluate SSE on nine clustering datasets and compare it with eleven semi-supervised partitioning and hierarchical clustering methods.
arXiv Detail & Related papers (2023-12-18T04:00:40Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Oracle-guided Contrastive Clustering [28.066047266687058]
Oracle-guided Contrastive Clustering(OCC) is proposed to cluster by interactively making pairwise same-cluster" queries to oracles with distinctive demands.
To the best of our knowledge, it is the first deep framework to perform personalized clustering.
arXiv Detail & Related papers (2022-11-01T12:05:12Z) - Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity
Constraints [0.0]
equiwide clustering relies neither on density nor on a predefined number of expected classes, but on a dissimilarity threshold.
We review and evaluate suitable clustering algorithms to identify trade-offs between the various practical solutions for this clustering problem.
arXiv Detail & Related papers (2021-09-28T12:02:18Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.