The Need for Climate Data Stewardship: 10 Tensions and Reflections regarding Climate Data Governance
- URL: http://arxiv.org/abs/2403.18107v1
- Date: Tue, 26 Mar 2024 21:16:03 GMT
- Title: The Need for Climate Data Stewardship: 10 Tensions and Reflections regarding Climate Data Governance
- Authors: Stefaan Verhulst,
- Abstract summary: Article advocates for a paradigm shift towards multi-stakeholder governance, data stewardship, and equitable data practices.
It underscores the critical role of data stewards in navigating these challenges.
- Score: 0.21756081703275998
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Datafication -- the increase in data generation and advancements in data analysis -- offers new possibilities for governing and tackling worldwide challenges such as climate change. However, employing new data sources in policymaking carries various risks, such as exacerbating inequalities, introducing biases, and creating gaps in access. This paper articulates ten core tensions related to climate data and its implications for climate data governance, ranging from the diversity of data sources and stakeholders to issues of quality, access, and the balancing act between local needs and global imperatives. Through examining these tensions, the article advocates for a paradigm shift towards multi-stakeholder governance, data stewardship, and equitable data practices to harness the potential of climate data for public good. It underscores the critical role of data stewards in navigating these challenges, fostering a responsible data ecology, and ultimately contributing to a more sustainable and just approach to climate action and broader social issues.
Related papers
- Urban Computing for Climate and Environmental Justice: Early Perspectives From Two Research Initiatives [2.8980151855313387]
Extreme weather events are becoming more frequent and severe, disproportionately affecting low-income and underrepresented groups.
We present two multiyear, multidisciplinary projects situated in Chicago, USA and Niter'oi, Brazil.
We discuss the essential requirements, as well as existing gaps, for visual analytics tools that facilitate the understanding and mitigation of climate-related risks in urban environments.
arXiv Detail & Related papers (2024-10-06T00:32:03Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
Recent surge of interest in machine learning has sparked a trend towards large-scale adoption of AI/ML.
There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle.
This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations.
arXiv Detail & Related papers (2024-05-22T21:19:35Z) - Analyzing Regional Impacts of Climate Change using Natural Language
Processing Techniques [0.9387233631570752]
We use BERT (Bidirectional Representations from Transformers) for Named Entity Recognition (NER) to identify specific geographies within the climate literature.
We conduct region-specific climate trend analyses to pinpoint the predominant themes or concerns related to climate change within a particular area.
These in-depth examinations of location-specific climate data enable the creation of more customized policy-making, adaptation, and mitigation strategies.
arXiv Detail & Related papers (2024-01-11T16:44:59Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - AI for Global Climate Cooperation: Modeling Global Climate Negotiations,
Agreements, and Long-Term Cooperation in RICE-N [75.67460895629348]
Achieving long-term cooperation on climate change mitigation with n strategic agents poses a complex game-theoretic problem.
We introduce RICE-N, a multi-region integrated assessment model that simulates the global climate and economy.
We describe how to use multi-agent reinforcement learning to train rational agents using RICE-N.
arXiv Detail & Related papers (2022-08-15T04:38:06Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z) - From Talk to Action with Accountability: Monitoring the Public
Discussion of Policy Makers with Deep Neural Networks and Topic Modelling [0.0]
We propose a multi-source topic aggregation system (MuSTAS)
MuSTAS processes policy makers speech and rhetoric from several publicly available sources into an easily digestible topic summary.
This topic digest will serve the general public and civil society in assessing where, how, and when politicians talk about climate and climate policies.
arXiv Detail & Related papers (2020-10-16T12:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.