Towards A Comprehensive Assessment of AI's Environmental Impact
- URL: http://arxiv.org/abs/2405.14004v1
- Date: Wed, 22 May 2024 21:19:35 GMT
- Title: Towards A Comprehensive Assessment of AI's Environmental Impact
- Authors: Srija Chakraborty,
- Abstract summary: Recent surge of interest in machine learning has sparked a trend towards large-scale adoption of AI/ML.
There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle.
This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations.
- Score: 0.5982922468400899
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence, machine learning (AI/ML) has allowed exploring solutions for a variety of environmental and climate questions ranging from natural disasters, greenhouse gas emission, monitoring biodiversity, agriculture, to weather and climate modeling, enabling progress towards climate change mitigation. However, the intersection of AI/ML and environment is not always positive. The recent surge of interest in ML, made possible by processing very large volumes of data, fueled by access to massive compute power, has sparked a trend towards large-scale adoption of AI/ML. This interest places tremendous pressure on natural resources, that are often overlooked and under-reported. There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle for informing policymakers, stakeholders to adequately implement standards and policies and track the policy outcome over time. For these policies to be effective, AI's environmental impact needs to be monitored in a spatially-disaggregated, timely manner across the globe at the key activity sites. This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations. We present a case study around Northern Virginia, United States that hosts a growing number of datacenters and observe changes in multiple satellite-based environmental metrics. We then discuss the steps to expand this methodology for comprehensive assessment of AI's environmental impact across the planet. We also identify data gaps and formulate recommendations for improving the understanding and monitoring AI-induced changes to the environment and climate.
Related papers
- AI, Climate, and Regulation: From Data Centers to the AI Act [2.874893537471256]
We aim to provide guidance on the climate-related regulation for data centers and AI specifically.
We propose a specific interpretation of the AI Act to bring reporting on the previously unadressed energy consumption from AI inferences back into the scope.
We argue for an interpretation of the AI Act that includes environmental concerns in the mandatory risk assessment.
arXiv Detail & Related papers (2024-10-09T08:43:53Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Towards Environmentally Equitable AI via Geographical Load Balancing [40.142341503145275]
This paper takes a first step toward addressing AI's environmental inequity by balancing its regional negative environmental impact.
We run trace-based simulations by considering a set of 10 geographically-distributed data centers that serve inference requests for a large language AI model.
The results demonstrate that existing GLB approaches may amplify environmental inequity while our proposed equity-aware GLB can significantly reduce the regional disparity in terms of carbon and water footprints.
arXiv Detail & Related papers (2023-06-20T17:13:33Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - Power and accountability in reinforcement learning applications to
environmental policy [0.0]
Reinforcement Learning (RL) may both hold the greatest promise and present the most pressing perils.
This paper explores how RL-driven policy refracts existing power relations in the environmental domain.
arXiv Detail & Related papers (2022-05-22T19:31:37Z) - Unraveling the hidden environmental impacts of AI solutions for
environment [0.04588028371034406]
In the past ten years artificial intelligence has encountered such dramatic progress that it is seen now as a tool of choice to solve environmental issues.
The deep learning community began to realize that training models with more and more parameters required a lot of energy and as a consequence GHG emissions.
This article proposes to study the possible negative impact of "AI for green"
arXiv Detail & Related papers (2021-10-22T14:56:47Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
It has become an important topic to explore the impact of AI on society from a people-centered perspective.
Previous works in citizen science have identified methods of using AI to engage the public in research.
This article discusses the challenges of applying AI in Community Citizen Science.
arXiv Detail & Related papers (2021-10-05T12:51:11Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
Geosystems are geological formations altered by humans activities such as fossil energy exploration, waste disposal, geologic carbon sequestration, and renewable energy generation.
The responsible use and exploration of geosystems are thus critical to the geosystem governance, which in turn depends on the efficient monitoring, risk assessment, and decision support tools for practical implementation.
Fast advances in machine learning algorithms and novel sensing technologies in recent years have presented new opportunities for the subsurface research community to improve the efficacy and transparency of geosystem governance.
arXiv Detail & Related papers (2021-04-10T13:40:22Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z) - A survey on applications of augmented, mixed and virtual reality for
nature and environment [114.4879749449579]
Augmented reality (AR), virtual reality (VR) and mixed reality (MR) are technologies of great potential due to the engaging and enriching experiences they are capable of providing.
However, the possibilities that AR, VR and MR offer in the area of environmental applications are not yet widely explored.
We present the outcome of a survey meant to discover and classify existing AR/VR/MR applications that can benefit the environment or increase awareness on environmental issues.
arXiv Detail & Related papers (2020-08-27T09:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.