Segment Any Medical Model Extended
- URL: http://arxiv.org/abs/2403.18114v1
- Date: Tue, 26 Mar 2024 21:37:25 GMT
- Title: Segment Any Medical Model Extended
- Authors: Yihao Liu, Jiaming Zhang, Andres Diaz-Pinto, Haowei Li, Alejandro Martin-Gomez, Amir Kheradmand, Mehran Armand,
- Abstract summary: We introduce SAMM Extended (SAMME), a platform that integrates new SAM variant models, adopts faster communication protocols, accommodates new interactive modes, and allows for fine-tuning of subcomponents of the models.
These features can expand the potential of foundation models like SAM, and the results can be translated to applications such as image-guided therapy, mixed reality interaction, robotic navigation, and data augmentation.
- Score: 39.80956010574076
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Segment Anything Model (SAM) has drawn significant attention from researchers who work on medical image segmentation because of its generalizability. However, researchers have found that SAM may have limited performance on medical images compared to state-of-the-art non-foundation models. Regardless, the community sees potential in extending, fine-tuning, modifying, and evaluating SAM for analysis of medical imaging. An increasing number of works have been published focusing on the mentioned four directions, where variants of SAM are proposed. To this end, a unified platform helps push the boundary of the foundation model for medical images, facilitating the use, modification, and validation of SAM and its variants in medical image segmentation. In this work, we introduce SAMM Extended (SAMME), a platform that integrates new SAM variant models, adopts faster communication protocols, accommodates new interactive modes, and allows for fine-tuning of subcomponents of the models. These features can expand the potential of foundation models like SAM, and the results can be translated to applications such as image-guided therapy, mixed reality interaction, robotic navigation, and data augmentation.
Related papers
- SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images [40.4422523499489]
Segment Anything Model (SAM) has demonstrated impressive performance on a wide range of natural image segmentation tasks.
We propose SAMUNet, a new foundation model which incorporates U-Net to the original SAM, to fully leverage the powerful contextual modeling ability of convolutions.
We train SAM-UNet on SA-Med2D-16M, the largest 2-dimensional medical image segmentation dataset to date, yielding a universal pretrained model for medical images.
arXiv Detail & Related papers (2024-08-19T11:01:00Z) - Boosting Medical Image Classification with Segmentation Foundation Model [19.41887842350247]
The Segment Anything Model (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
No studies have shown how to harness the power of SAM for medical image classification.
We introduce SAMAug-C, an innovative augmentation method based on SAM for augmenting classification datasets.
arXiv Detail & Related papers (2024-06-16T17:54:49Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Segment Anything Model for Medical Image Segmentation: Current
Applications and Future Directions [8.216028136706948]
The recent introduction of the Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation.
We provide a comprehensive overview of recent endeavors aimed at extending the efficacy of SAM to medical image segmentation tasks.
We explore potential avenues for future research directions in SAM's role within medical image segmentation.
arXiv Detail & Related papers (2024-01-07T14:25:42Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Towards Segment Anything Model (SAM) for Medical Image Segmentation: A
Survey [8.76496233192512]
We discuss efforts to extend the success of the Segment Anything Model to medical image segmentation tasks.
Many insights are drawn to guide future research to develop foundation models for medical image analysis.
arXiv Detail & Related papers (2023-05-05T16:48:45Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.