論文の概要: QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1
- arxiv url: http://arxiv.org/abs/2403.18116v1
- Date: Tue, 26 Mar 2024 21:45:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 20:55:22.679035
- Title: QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1
- Title(参考訳): QuakeSet:Sentinel-1による地震観測のためのデータセットと低リソースモデル
- Authors: Daniele Rege Cambrin, Paolo Garza,
- Abstract要約: 本稿では,Sentinel-1から得られた画像からなる新しいデータセットを提案する。
地震解析におけるMLモデルの有効性を評価するために,従来の機械学習モデルとディープラーニングモデルをベースラインとして提供する。
- 参考スコア(独自算出の注目度): 5.279257531335345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earthquake monitoring is necessary to promptly identify the affected areas, the severity of the events, and, finally, to estimate damages and plan the actions needed for the restoration process. The use of seismic stations to monitor the strength and origin of earthquakes is limited when dealing with remote areas (we cannot have global capillary coverage). Identification and analysis of all affected areas is mandatory to support areas not monitored by traditional stations. Using social media images in crisis management has proven effective in various situations. However, they are still limited by the possibility of using communication infrastructures in case of an earthquake and by the presence of people in the area. Moreover, social media images and messages cannot be used to estimate the actual severity of earthquakes and their characteristics effectively. The employment of satellites to monitor changes around the globe grants the possibility of exploiting instrumentation that is not limited by the visible spectrum, the presence of land infrastructures, and people in the affected areas. In this work, we propose a new dataset composed of images taken from Sentinel-1 and a new series of tasks to help monitor earthquakes from a new detailed view. Coupled with the data, we provide a series of traditional machine learning and deep learning models as baselines to assess the effectiveness of ML-based models in earthquake analysis.
- Abstract(参考訳): 地震モニタリングは, 被害地域, 地震の深刻度を迅速に把握し, 最終的に被害を推定し, 復旧に必要な行動を計画するために必要である。
地震の強度と震源を観測するために地震局を用いるのは、遠隔地を扱う場合に限られている(世界規模キャピラリーのカバーはできない)。
全ての被害地域の識別と分析は、伝統的な駅で監視されていない地域を支援するために義務付けられている。
危機管理におけるソーシャルメディアイメージの利用は,様々な状況において有効であることが証明されている。
しかし, 地震時に通信インフラを利用する可能性や, 地域住民の存在によっても制限されている。
さらに, ソーシャルメディア画像やメッセージは, 地震の実際の重大度とその特性を効果的に推定するためには利用できない。
世界中の変化を監視する衛星の使用は、可視スペクトルや土地インフラの存在、被災地域の人々によって制限されない機器を活用できる可能性がある。
本研究では,Sentinel-1から得られた画像と,地震のモニタリングを支援するための一連のタスクからなる新しいデータセットを提案する。
これらのデータと合わせて,機械学習モデルとディープラーニングモデルをベースラインとして提供し,地震解析におけるMLモデルの有効性を評価する。
関連論文リスト
- Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking [5.71478837100808]
本稿では,地震の規模を計量学習問題として推定する。
我々は、Sentinel-1衛星画像から地震の大きさを推定し、さらにペアのサンプルをランク付けするためにモデルを訓練する。
実験の結果,従来の回帰のみに基づく手法に比べて最大30%以上のMAEの改善が得られた。
論文 参考訳(メタデータ) (2024-07-25T15:35:44Z) - Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling [43.056135090637646]
地盤運動の条件生成モデル(CGM-GM)
本研究では, 高周波・空間連続地震動波形を合成する人工知能シミュレータを提案する。
CGM-GMは、最先端の非エルゴディックな地上運動モデルよりも優れた可能性を示す。
論文 参考訳(メタデータ) (2024-07-21T08:23:37Z) - Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
本稿では, DAVI(Disaster Assessment with VIsion foundation model)を提案する。
DAVIは、ソース領域でトレーニングされたモデルからイメージセグメンテーション基礎モデルにタスク固有の知識を統合し、ターゲット領域の損傷の可能性を示す擬似ラベルを生成する。
次に、ピクセルと全体像の両方をターゲットとした2段階の精細化プロセスを使用して、災害現場におけるより正確に変化を特定します。
論文 参考訳(メタデータ) (2024-06-12T09:21:28Z) - Generalized Neural Networks for Real-Time Earthquake Early Warning [22.53592578343506]
我々は,任意の局分布を持つ任意の場所で発生した地震をニューラルネットワークトレーニングのために,データ組換え法を用いて生成する。
訓練されたモデルは、地震検出とパラメータ評価のための異なる監視装置を備えた様々な地域に適用することができる。
我々のモデルは、最初のトリガーステーションから4秒以内に地震の位置とマグニチュードを確実に報告し、平均誤差は2.6-6.3 kmと0.05-0.17である。
論文 参考訳(メタデータ) (2023-12-23T10:45:21Z) - Multi-task multi-station earthquake monitoring: An all-in-one seismic
Phase picking, Location, and Association Network (PLAN) [19.697978881402143]
標準的な監視ワークフローには、フェーズピッキング、アソシエーション、ロケーションといった相互に依存したタスクが含まれている。
本稿では, マルチステーション地震データを直接処理し, 同時位相選択, 関連, 位置を求めるグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-06-24T09:46:18Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
本稿では,Twitterなどのソーシャルメディアプラットフォームから地震後の建物画像を自動的に抽出する手法を提案する。
トランスファーラーニングと6500枚の手動ラベル付き画像を用いて,現場に損傷のある建物を画像として認識する深層学習モデルを訓練した。
訓練されたモデルは、異なる場所で新たに取得した地震の画像でテストし、トルコのM7.0地震の後、Twitterのフィードでほぼリアルタイムで実行された。
論文 参考訳(メタデータ) (2021-10-12T06:31:54Z) - Towards advancing the earthquake forecasting by machine learning of
satellite data [22.87513332935679]
本研究では,6マグニチュード以上の1,371地震の衛星データに基づく短期予測を行うための新しい機械学習手法であるInverse Boosting Pruning Trees(IBPT)を開発した。
提案手法は,選択された6つのベースラインを上回り,異なる地震データベースの地震予測の可能性を向上する強力な能力を示す。
論文 参考訳(メタデータ) (2021-01-31T02:29:48Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。