For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers
- URL: http://arxiv.org/abs/2403.18125v1
- Date: Tue, 26 Mar 2024 22:08:33 GMT
- Title: For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers
- Authors: Evan Lucas, Kelly S. Steelman, Leo C. Ureel, Charles Wallace,
- Abstract summary: We propose the creation of a dataset that captures questions of digital newcomers and outsiders.
We lay out our planned efforts and some potential uses of this dataset.
- Score: 0.5249805590164901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the rise of large language models (LLMs) has created rich new opportunities to learn about digital technology, many on the margins of this technology struggle to gain and maintain competency due to lexical or conceptual barriers that prevent them from asking appropriate questions. Although there have been many efforts to understand factuality of LLM-created content and ability of LLMs to answer questions, it is not well understood how unclear or nonstandard language queries affect the model outputs. We propose the creation of a dataset that captures questions of digital newcomers and outsiders, utilizing data we have compiled from a decade's worth of one-on-one tutoring. In this paper we lay out our planned efforts and some potential uses of this dataset.
Related papers
- Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
Large language models (LLMs) have emerged as a vibrant research topic.
LLMs face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations.
This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources.
arXiv Detail & Related papers (2024-04-14T16:34:31Z) - Can LLMs Learn New Concepts Incrementally without Forgetting? [21.95081572612883]
Large Language Models (LLMs) have achieved remarkable success across various tasks, yet their ability to learn incrementally without forgetting remains underexplored.
We introduce Concept-1K, a novel dataset comprising 1,023 recently emerged concepts across diverse domains.
Using Concept-1K as a testbed, we aim to answer the question: Can LLMs learn new concepts incrementally without forgetting like humans?'
arXiv Detail & Related papers (2024-02-13T15:29:50Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
This study aims to evaluate the ability of LLMs to distinguish reliable information from external knowledge.
Our benchmark consists of two tasks, Question Answering and Text Generation, and for each task, we provide models with a context containing counterfactual information.
arXiv Detail & Related papers (2023-11-14T13:24:19Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Challenges and Contributing Factors in the Utilization of Large Language
Models (LLMs) [10.039589841455136]
This review explores the issue of domain specificity, where large language models (LLMs) may struggle to provide precise answers to specialized questions within niche fields.
It's suggested to diversify training data, fine-tune models, enhance transparency and interpretability, and incorporate ethics and fairness training.
arXiv Detail & Related papers (2023-10-20T08:13:36Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks.
Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend.
This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions.
arXiv Detail & Related papers (2023-05-29T15:30:13Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z) - Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
Open Problems [108.81683598693539]
offline reinforcement learning algorithms hold tremendous promise for making it possible to turn large datasets into powerful decision making engines.
We will aim to provide the reader with an understanding of these challenges, particularly in the context of modern deep reinforcement learning methods.
arXiv Detail & Related papers (2020-05-04T17:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.