Can LLMs Learn New Concepts Incrementally without Forgetting?
- URL: http://arxiv.org/abs/2402.08526v3
- Date: Tue, 18 Jun 2024 06:56:44 GMT
- Title: Can LLMs Learn New Concepts Incrementally without Forgetting?
- Authors: Junhao Zheng, Shengjie Qiu, Qianli Ma,
- Abstract summary: Large Language Models (LLMs) have achieved remarkable success across various tasks, yet their ability to learn incrementally without forgetting remains underexplored.
We introduce Concept-1K, a novel dataset comprising 1,023 recently emerged concepts across diverse domains.
Using Concept-1K as a testbed, we aim to answer the question: Can LLMs learn new concepts incrementally without forgetting like humans?'
- Score: 21.95081572612883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable success across various tasks, yet their ability to learn incrementally without forgetting remains underexplored. Incremental learning (IL) is crucial as it enables models to acquire new knowledge while retaining previously learned information, akin to human learning. Existing benchmarks for IL are insufficient due to data leakage issues and the overqualification of LLMs. To address these challenges, we introduce Concept-1K, a novel dataset comprising 1,023 recently emerged concepts across diverse domains. The concepts in Concept-1K are discrete, interpretable units of knowledge that allow for fine-grained analysis of learning and forgetting processes. Using Concept-1K as a testbed, we aim to answer the question: ``Can LLMs learn new concepts incrementally without forgetting like humans?'' Our investigation reveals that LLMs still suffer from catastrophic forgetting and that LoRA, despite fine-tuning fewer parameters, may lead to more forgetting on training data. Additionally, we explore the roles of in-context learning, model scale, buffer size, and pretraining in IL performance. These findings highlight the strengths and limitations of LLMs in IL scenarios and provide a robust benchmark for future research.
Related papers
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Does your LLM truly unlearn? An embarrassingly simple approach to recover unlearned knowledge [36.524827594501495]
We show that applying quantization to models that have undergone unlearning can restore the "forgotten" information.
We find that for unlearning methods with utility constraints, the unlearned model retains an average of 21% of the intended forgotten knowledge in full precision.
arXiv Detail & Related papers (2024-10-21T19:28:37Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges [11.228131492745842]
Large language models (LLMs) have spurred a new research paradigm in natural language processing.
Despite their excellent capability in knowledge-based question answering and reasoning, their potential to retain faulty or even harmful knowledge poses risks of malicious application.
Knowledge unlearning, derived from analogous studies on machine unlearning, presents a promising avenue to address this concern.
arXiv Detail & Related papers (2023-11-27T12:37:51Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules.
We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules.
Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.
arXiv Detail & Related papers (2023-11-15T11:42:41Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
Large language models (LLMs) are versatile and can solve different tasks due to their emergent ability and generalizability.
In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases.
arXiv Detail & Related papers (2023-09-06T15:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.