論文の概要: Recommendation of data-free class-incremental learning algorithms by simulating future data
- arxiv url: http://arxiv.org/abs/2403.18132v1
- Date: Tue, 26 Mar 2024 22:26:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:55:29.854447
- Title: Recommendation of data-free class-incremental learning algorithms by simulating future data
- Title(参考訳): 将来のデータシミュレーションによるデータフリークラス増分学習アルゴリズムの勧告
- Authors: Eva Feillet, Adrian Popescu, Céline Hudelot,
- Abstract要約: クラスインクリメンタルな学習は、クラスのバッチで構成されるシーケンシャルなデータストリームを扱う。
本稿では,将来的なデータストリームをシミュレートするアルゴリズムレコメンデーション手法を提案する。
シミュレーションストリーム上の最近のアルゴリズムを評価し,ユーザ定義のインクリメンタルな設定において,最高のパフォーマンスを示すアルゴリズムを推奨する。
- 参考スコア(独自算出の注目度): 10.309079388745753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-incremental learning deals with sequential data streams composed of batches of classes. Various algorithms have been proposed to address the challenging case where samples from past classes cannot be stored. However, selecting an appropriate algorithm for a user-defined setting is an open problem, as the relative performance of these algorithms depends on the incremental settings. To solve this problem, we introduce an algorithm recommendation method that simulates the future data stream. Given an initial set of classes, it leverages generative models to simulate future classes from the same visual domain. We evaluate recent algorithms on the simulated stream and recommend the one which performs best in the user-defined incremental setting. We illustrate the effectiveness of our method on three large datasets using six algorithms and six incremental settings. Our method outperforms competitive baselines, and performance is close to that of an oracle choosing the best algorithm in each setting. This work contributes to facilitate the practical deployment of incremental learning.
- Abstract(参考訳): クラスインクリメンタルな学習は、クラスのバッチで構成されるシーケンシャルなデータストリームを扱う。
過去のクラスからのサンプルを格納できないという問題に対処するために、様々なアルゴリズムが提案されている。
しかし、これらのアルゴリズムの相対的な性能はインクリメンタルな設定に依存するため、ユーザ定義設定に適したアルゴリズムを選択することはオープンな問題である。
そこで本研究では,将来的なデータストリームをシミュレートするアルゴリズムレコメンデーション手法を提案する。
クラスの初期セットが与えられたら、生成モデルを利用して、同じビジュアルドメインから将来のクラスをシミュレートする。
シミュレーションストリーム上の最近のアルゴリズムを評価し,ユーザ定義のインクリメンタルな設定において,最高のパフォーマンスを示すアルゴリズムを推奨する。
本稿では,6つのアルゴリズムと6つのインクリメンタル設定を用いた3つの大規模データセットに対する提案手法の有効性について述べる。
提案手法は競争基準よりも優れており,各設定において最適なアルゴリズムを選択するオラクルに近い性能である。
この作業は、漸進的な学習の実践的な展開を促進するのに役立ちます。
関連論文リスト
- Triangle and Four Cycle Counting with Predictions in Graph Streams [59.05440236993604]
三角形の数と4サイクルを推定するための,データ駆動型ワンパスストリーミングアルゴリズムを提案する。
従来の"古典的"アルゴリズムを改善するために、ストリーム要素の特定の特性を予測できるトレーニングされたオラクルを使用します。
提案手法は,従来のマルチパスおよびランダム順序ストリーミングアルゴリズムを特殊なケースとみなすことができるため,従来の"古典的"ストリーミングアルゴリズムの取り組みを拡大する。
論文 参考訳(メタデータ) (2022-03-17T19:26:00Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Probabilistic Active Learning for Active Class Selection [3.6471065658293043]
機械学習において、アクティブクラス選択(ACS)アルゴリズムは、クラスを積極的に選択し、そのクラスのインスタンスを提供することをオラクルに依頼することを目的としている。
本稿では,ACS問題を擬似インスタンスを導入して能動的学習タスクに変換するアルゴリズム(PAL-ACS)を提案する。
論文 参考訳(メタデータ) (2021-08-09T09:20:19Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - A Framework and Benchmarking Study for Counterfactual Generating Methods
on Tabular Data [0.0]
カウンターファクトな説明は、機械学習の予測を説明する効果的な方法と見なされる。
このような説明を導き出そうとするアルゴリズムは、すでに数十ある。
ベンチマーク研究とフレームワークは、実践者がどのテクニックとビルディングブロックが最も適しているかを決定するのに役立ちます。
論文 参考訳(メタデータ) (2021-07-09T21:06:03Z) - Data-driven Weight Initialization with Sylvester Solvers [72.11163104763071]
本稿では,ディープニューラルネットワークのパラメータを初期化するためのデータ駆動方式を提案する。
提案手法は,特にショットや微調整の設定において有効であることを示す。
論文 参考訳(メタデータ) (2021-05-02T07:33:16Z) - Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection [0.9281671380673306]
進化的アルゴリズムの適用における重要な課題は、目の前の問題に最も適したアルゴリズムインスタンスの選択である。
本研究では, 疑似ブール最適化問題の解法として, このような先行性能データを用いて, 動的アルゴリズム選択スキームを推論する方法について分析する。
論文 参考訳(メタデータ) (2021-02-12T12:27:02Z) - Towards Understanding the Behaviors of Optimal Deep Active Learning
Algorithms [19.65665942630067]
アクティブラーニング(AL)アルゴリズムは、モデルがデータ選択プロセスを導くため、より少ないデータでより良いパフォーマンスを達成できます。
alの最適形状についてはほとんど研究されていないため、研究者たちはモデルがどこが不足しているかを理解するのに役立つだろう。
我々は,この最適オラクルを探索し,いくつかのタスクで解析するシミュレーションアニーリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-29T22:56:42Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。