Multi-Layer Dense Attention Decoder for Polyp Segmentation
- URL: http://arxiv.org/abs/2403.18180v1
- Date: Wed, 27 Mar 2024 01:15:05 GMT
- Title: Multi-Layer Dense Attention Decoder for Polyp Segmentation
- Authors: Krushi Patel, Fengjun Li, Guanghui Wang,
- Abstract summary: We propose a novel decoder architecture aimed at hierarchically aggregating locally enhanced multi-level dense features.
Specifically, we introduce a novel module named Dense Attention Gate (DAG), which adaptively fuses all previous layers' features to establish local feature relations among all layers.
Our experiments and comparisons with nine competing segmentation models demonstrate that the proposed architecture achieves state-of-the-art performance.
- Score: 10.141956829529859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and segmenting polyps is crucial for expediting the diagnosis of colon cancer. This is a challenging task due to the large variations of polyps in color, texture, and lighting conditions, along with subtle differences between the polyp and its surrounding area. Recently, vision Transformers have shown robust abilities in modeling global context for polyp segmentation. However, they face two major limitations: the inability to learn local relations among multi-level layers and inadequate feature aggregation in the decoder. To address these issues, we propose a novel decoder architecture aimed at hierarchically aggregating locally enhanced multi-level dense features. Specifically, we introduce a novel module named Dense Attention Gate (DAG), which adaptively fuses all previous layers' features to establish local feature relations among all layers. Furthermore, we propose a novel nested decoder architecture that hierarchically aggregates decoder features, thereby enhancing semantic features. We incorporate our novel dense decoder with the PVT backbone network and conduct evaluations on five polyp segmentation datasets: Kvasir, CVC-300, CVC-ColonDB, CVC-ClinicDB, and ETIS. Our experiments and comparisons with nine competing segmentation models demonstrate that the proposed architecture achieves state-of-the-art performance and outperforms the previous models on four datasets. The source code is available at: https://github.com/krushi1992/Dense-Decoder.
Related papers
- FLDNet: A Foreground-Aware Network for Polyp Segmentation Leveraging
Long-Distance Dependencies [1.7623838912231695]
We propose FLDNet, a Transformer-based neural network that captures long-distance dependencies for accurate polyp segmentation.
Our proposed method, FLDNet, was evaluated using seven metrics on common datasets and demonstrated superiority over state-of-the-art methods on widely-used evaluation measures.
arXiv Detail & Related papers (2023-09-12T06:32:42Z) - SegT: A Novel Separated Edge-guidance Transformer Network for Polyp
Segmentation [10.144870911523622]
We propose a novel separated edge-guidance transformer (SegT) network that aims to build an effective polyp segmentation model.
A transformer encoder that learns a more robust representation than existing CNN-based approaches was specifically applied.
To evaluate the effectiveness of SegT, we conducted experiments with five challenging public datasets.
arXiv Detail & Related papers (2023-06-19T08:32:05Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - LAPFormer: A Light and Accurate Polyp Segmentation Transformer [6.352264764099531]
We propose a new model with encoder-decoder architecture named LAPFormer, which uses a hierarchical Transformer encoder to better extract global feature.
Our proposed decoder contains a progressive feature fusion module designed for fusing feature from upper scales and lower scales.
We test our model on five popular benchmark datasets for polyp segmentation.
arXiv Detail & Related papers (2022-10-10T01:52:30Z) - ColonFormer: An Efficient Transformer based Method for Colon Polyp
Segmentation [1.181206257787103]
ColonFormer is an encoder-decoder architecture with the capability of modeling long-range semantic information.
Our ColonFormer achieve state-of-the-art performance on all benchmark datasets.
arXiv Detail & Related papers (2022-05-17T16:34:04Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
We propose a new type of polyp segmentation method, named Polyp-PVT.
The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities.
arXiv Detail & Related papers (2021-08-16T07:09:06Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation [17.8181080354116]
We propose a feature enhancement network for accurate polyp segmentation in colonoscopy images.
Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM)
The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.
arXiv Detail & Related papers (2021-05-03T16:46:26Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.